10th Asian Triangle Heavy-Ion Conference - ATHIC 2025

Application of machine learning and quantum computation in high energy physics

Shuzhe Shi Tsinghua University

non-perturbative field theory calculation

"first principle" microscopic theory: quantum field theory $L \leftrightarrow H$

non-perturbative lattice QFT: thermodynamics, transport

quantum simulation/computation of lattice QFT

$$\{\hat{\psi}_{n}^{\dagger}, \hat{\psi}_{m}\} = \delta_{n,m}, \quad \{\hat{\psi}_{n}, \hat{\psi}_{m}\} = \{\hat{\psi}_{n}^{\dagger}, \\ [\hat{\Pi}_{n}, \hat{A}_{m}] = \delta_{n,m}, \quad [\hat{\Pi}_{n}, \hat{\Pi}_{m}] = [\hat{A}_{n}, \\ \text{lices: spin charge color flavor } \vec{\mathbf{r}} \cdots$$

quantum simulation/computation of lattice QFT

quantum hardware

qubit-states

gates

quantum simulation/computation of lattice QFT

hadron structure

$$\hat{H} | \Psi_{\text{vac}} \rangle = E_{\text{gnd}} | \Psi_{\text{vac}} \rangle$$
$$\hat{H} | \Psi_{\text{meson}} \rangle = E_{1\text{st}} | \Psi_{\text{meson}} \rangle$$

thermal properties $\langle O \rangle = \operatorname{tr}(\hat{O} e^{-\beta(\hat{H}-\mu\hat{Q})})/Z$

real-time evolution

$$\begin{aligned} \partial_t |\Psi(t)\rangle &= -i\hat{H}|\Psi(t)\rangle & \text{[Final constraints} \\ \partial_t \hat{\rho}(t) &= -i[\hat{H}, \hat{\rho}(t)] & \text{[Single constraints} \\ O(t) &= \operatorname{tr}\left(\hat{O}\,\hat{\rho}(t)\right) & \text{[Final constraints} \end{aligned}$$

(incomplete list)

Reviews:

[C. W. Bauer et al., PRX Quantum 4, 027001 (2023)] [Bauer, Davoudi, Klco, Savage, Nature Rev. Phys. 5, 420 (2023)]

[Li, Guo, Lai, Liu, Wang, Xing, Zhang, Zhu (QuNu Collaboration), PRD.105.L111502, PRD.109.036025, Sci.ChinaPhys.Mech.Astron.66,281011]

> [Hidaka, Yamamoto, 2409.17349] [Hayata, Hidaka, JHEP09(2023)126, JHEP07(2024)106] [Ebner, Muller, Schafer, Seidl, Yao, PRD.109.014504] [Yao, PRD.108.L031504] [Czajka, Kang, Ma, Zhao, JHEP08, 209] [Ikeda, Kharzeev, Meyer, **SS**, PRD.108.L091501]

[de Jong, Lee, Mulligan, Ploskon, Ringer, Yao, PRD.106.054508] [Farrell, Illa, Ciavarella, Savage, PRX Quantum.5.020315; PRD.109.114501] [Ikeda, Kang, Kharzeev, Qian, Zhao, JHEP10(2024)031] lorio, PRD.109.L071501] hile Chen, **SS**, Li Yan, 2412.00662] [Lee, Mulligan, Ringer, Yao, PRD.108.094518] eda, Kharzeev, **SS**, PRD.108.074001] [Wu, Du, Zhao, Vary, PRD.110.056044] [Kharzeev, Kikuchi, PRRes.023342] (eda, Kharzeev, Kikuchi, PRD.103.L071502) lorio, Frenklakh, Ikeda, Kharzeev, Korepin, **SS**, Yu, **PRL**.131.021902; PRD.110.094029]

thermal hadron production in hard collisions

Schwinger model: w/ source

[Florio, Frenklakh, Ikeda, Kharzeev, Korepin, SS, Yu, PhysRevLett.131.021902; PhysRevD.110.094029]

isolated quantum system: thermalization of quantum distribution function Schwinger model: $H(t) = \left[\left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_x - g\gamma^1A - m)\psi \right) dx \right].$ 8**F** $w_s \times N$ m = 0 $w_p \times N$ 0.6 0.4 0.2 $w_0 \times N$ $w_1 \times N$ $-\pi/2$ $\pi/2$ 0 $-\pi$ *p*[*g*] *strong coupling*

isolated quantum system: thermalization of quantum distribution function

Schwinger model: $H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_x - g\gamma^1A)\right) dx$

band structure caused by quasi-particles

$$A - m\psi \bigg) \mathrm{d}x \, . \qquad \hat{W}_{\alpha\beta}(t, z, p) = \int \bar{\psi}_{\alpha}(z_{+}) U(z_{+}, z_{-}) \psi_{\beta}(z_{-}) \, e$$

eigenstate thermalization hypothesis $\langle n | \hat{O} | n \rangle \approx f_O(E_n)$ $\sum p_n \langle n | \hat{O} | n \rangle \approx f_O(\sum p_n E_n)$ n general \ pure state thermal $\rho^{-\beta E_n}/Z$ C_{n} $\langle O \rangle_{PS}$ \approx if $\langle E \rangle_{PS} =$ $\langle E \rangle_{th}$

[Shile Chen, **SS**, Li Yan, 2412.00662]

zero-T high- μ EOS

SU(2) non-Abelian gauge theory in 1+1D

[Hidaka, Yamamoto, 2409.17349; Hayata, Hidaka, JHEP07(2024)106]

finite T, μ on real Quantum Computer

SU(2) non-Abelian gauge theory in 1+1D

[Zhang, Guo, Wang, Xing (QuNu Collaboration), 2411.18869]

Chiral condensate at finite T, μ using real Quantum Computers!

Quantum Computation: Status

Noise in QCs!

	Reviews:
	[C. W. Bauer et al., PRX Quantum 4, 027001 (2023)]
	[Bauer, Davoudi, Klco, Savage, Nature Rev. Phys. 5, 420 (2023)]
	[Li, Guo, Lai, Liu, Wang, Xing, Zhang, Zhu (QuNu Collaboration),
	PRD.105.L111502, PRD.109.036025, Sci. ChinaPhys. Mech. Astron. 66,281011]
0	
	[Hidaka, Yamamoto, 2409.17349]
	[Hayata, Hidaka, JHEP09(2023)126, JHEP07(2024)106]
	[Ebner, Muller, Schafer, Seidl, Yao, PRD.109.014504]
	[Yao, PRD.108.L031504]
	[Czajka, Kang, Ma, Zhao, JHEP08,209]
	[Ikeda, Kharzeev, Meyer, SS, PRD.108.L091501]
	Ide Jacob Lee Mullimer Blacker Discon Ver DDD 107-0545001

 [de Jong, Lee, Mulligan, Ploskon, Ringer, Yao, PRD.106.054508]

 [Farrell, Illa, <u>Ciavarella</u>, Savage, PRX Quantum.5.020315; PRD.109.114501]

 [Florio, PRD.109.L071501]
 [Ikeda, Kang, Kharzeev, Qian, Zhao, JHEP10(2024)031]

 [Shile Chen, S5, Li Yan, 2412.00662]
 [Lee, Mulligan, Ringer, Yao, PRD.108.094518]

 [Ikeda, Kharzeev, S5, PRD.108.074001]
 [Wu, Du, Zhao, Vary, PRD.110.056044]

 [Ikeda, Kharzeev, Kikuchi, PRD.103.L071502]
 [Kharzeev, Kikuchi, PRRes.023342]

 [Florio, Franklakh, Ikeda, Kharzeev, Korapin, S5, Yu, PRL.131.021902; PRD.110.094029]

Quantum Computation: Status

Tool(s) to assist Lattice QCD calculation?

Machine Learning!

thermal properties $\langle O \rangle = \operatorname{tr} \left(\hat{O} e^{-\beta(\hat{H} - \mu \hat{Q})} \right) / Z$

real-time evolution
$$\begin{split} \partial_t \left| \Psi(t) \right\rangle &= -i \, \hat{H} \left| \Psi(t) \right\rangle \\ \partial_t \hat{\rho}(t) &= -i \left[\hat{H}, \hat{\rho}(t) \right] \\ O(t) &= \mathrm{tr} \left(\hat{O} \, \hat{\rho}(t) \right) \end{split}$$
 Noise in QCs!

[Hidaka, Yamamoto, 2409,1734 [Hayata, Hidaka, JHEP09(2023)12 Yao, PRD,108,L031504 Czaika, Kano, Ma, Zhao, JHEP08,209 [Ikada, Kharzeev, Meyer, SS, PRD.108.L091501]

[de Jong, Lee, Mulligan, Ploskon, Ringer, Yao, PRD.106.054508] [Farrell, Illa, Ciavatella, Savage, PRX Quantum.5.020315; PRD.109.114501] [Florio, PRD.109.L071501] [Ikeda, Kang, Kharzeev, Qian, Zhao, JHEP10(2024)031] [Shile Chen, SS, Li Yan, 2412.00662] [Lee, Mulligan, Ringer, Yao, PRD.108.094518] [lkeda, Kharzeev, SS, PRD.108.074001] [Wu, Du, Zhao, Vary, PRD.110.056044] [Ikeda, Kharzeev, Kikuchi, PRD.103.L071502] [Kharzeev, Kikuchi, PRRes.023342] [Florio, Eranklakh, Ikeda, Kharzeev, Korapin, SS, Yu, PRL131.021902; PRD.110.094029]

Lattice calculation

$$Z = \operatorname{tr}(e^{-\beta H[\Psi,\Pi]}) = \int \mathscr{D}\Psi e^{-\beta \Psi} e^$$

sample $\Psi(\tau) \sim P[\Psi(t)] \propto e^{-\beta L[\Psi,\Psi]}$.

expensive to sample uncorrelated configurations $\Psi(\tau)!$

ML: approximate $P[\Psi(t)] \approx P_{\mathrm{ML}}[\Psi(t)]$, sample $\Psi(\tau) \sim P_{\rm ML}[\Psi(t)]$

•VAEs and GANs

- D. Giataganas, et al., New J. Phys. 24, 043040 (2022).
- K. Zhou, et al., Phys. Rev. D 100, 011501 (2019).
- J. M. Pawlowski and J. M. Urban, MLST 1, 045011 (2020).
- J. Singh, et al., SciPost Phys. 11, 043 (2021).
- Diffusion Models

Wang, Aarts, Zhou, JHEP 05 (2024) 060; 2412.13704

- Autoregressive models
 - D. Wu, et al., Phys. Rev. Lett. 122, 080602 (2019).
 - L. Wang, et al., CPL 39, 120502 (2022).
 - P. Białas, P. Korcyl, and T. Stebel, CPC 281, 108502 (2022).
- •Flow-based models
 - M. S. Albergo, et al., Phys. Rev. D 100, 034515 (2019).

G. Kanwar, et al., Phys. Rev. Lett. 125, 121601 (2020). K. A. Nicoli, et al., Phys. Rev. Lett. 126, 032001 (2021). L. Del Debbio, et al., Phys. Rev. D 104, 094507 (2021). M. Caselle, et al., JHEP 2022, 15 (2022). R. Abbott et al., Phys. Rev. D 106, 074506 (2022). A. Singha, et al., Phys. Rev. D 107, 014512 (2023).

S. Chen, et al., Phys. Rev. D 107, 056001(2023).

Review

K. Cranmer, G. Kanwar, S. Racanière, D. J. Rezende, and P. E. Shanahan, Advances in Machine-Learning-Based Sampling Motivated by Lattice Quatum Chromodynamics, Nat. Rev. Phys. 1 (2023).

$-S[\Psi,\Psi]$

Deep Neural Network

--- a general parameterization scheme to approximate continuous functions.

inverse problem solver – physics-driven learning

nature reviews physics

https://doi.org/10.1038/s42254-024-00798-x

Perspective

Check for updates

Physics-driven learning for inverse problems in quantum chromodynamics

Gert Aarts 1, Kenji Fukushima 2, Tetsuo Hatsuda 3, Andreas Ipp 4, Shuzhe Shi 5, Lingxiao Wang 3 & Kai Zhou 16,7

Symmetry

Physics Knowledge in Design Efficiency & Reliability

- **Principles**
- Physical Data
 - Physics Equations

Progress in Particle and Nuclear Physics 135 (2024) 104084

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

ELSEVIER

Exploring QCD matter in extreme conditions with Machine Learning

Kai Zhou^{a,b,*}, Lingxiao Wang^{a,*}, Long-Gang Pang^{c,*}, Shuzhe Shi^{d,e,*}

inverse problem solver – physics-driven learning

HIC observed particles → 1st-order phase trans Pang, Zhou, Su, Petersen, Stocker, Wang, Nat.Con

Neutron Star Mass-Radius \rightarrow EoS

Fujimoto, Fukushima, Murase, Phy Soma, Wang, **SS**, Stöcker, Zhou, PRD.107.083028; J

Energy spectrum \rightarrow potential

SS, Zhou, Zhao, Mukherjee, Zhuang, Phys

imaginary time correlation → spectral function Wang, **SS**, Zhou, PRD.106.L051502; Com.Phys.Com

femtoscopy \rightarrow hadron interaction

Wang,

lattice EoS → quasi particle properties Li, Lu, Pang, Qin, Phys.Lett.B

Gert Aarts ©¹, Kenji Fukushima ©², Tetsuo Hatsuda ©³, Andreas Ipp ©⁴, Shuzhe Shi ©⁵, Lingxiao Wang ©³ & Kai Zhou ©^{6,7}

en learning	<u>11</u>
<i>sition</i> nm. 9 (2018)1,210	hysics Knowledge in Design ficiency & Reliability Other Reviews:
ysRevD.98,023019 JCAP 98(2020)071	Ma, Pang, Wang, Zhou, Chin.Phys.Lett.40.112101
sRevD.105.014017	He, Ma, Pang, Song, Zhou, Nucl.Sci.Tech.34,6,88 Pang,
nm. (2022) 108547	Boehnlein et al, Rev.Mod.Phys.94.031003
Zhao, 2411.16343	Progress in Particle and Nuclear Physics 135 (2024) 104084 Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics
844(2023)138088 Exploring QCD n Kai Zhou *,*, Lingxia	journal homepage: www.elsevier.com/locate/ppnp

- Quantum Computation / Simulation:
 - real-time
 - finite temperature

Machine Learning: • inverse problems classification