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QCD phase diagram

Motivation: Understand the thermodynamics at the QCD chiral 
transition and exploration of the QCD phase diagram with lattice 
QCD numerical simulation.



Chemical potential on the lattice

(1 ± γ4)U±4(x) → (1 ± γ4)e
± ̂μU±4(x)

Continuum prescription, Divergence for the free fermion 
case in second order susceptibility: χ2 ∼ 1/a2

The prescription for chemical potential on the lattice,

P. Hasenfratz, F. Karsch, Phys.Lett.B 125 (1983) 308-310 
R. V. Gavai,Phys. Rev. D 32, 519 

No additional divergences appear in the interacting theory.
Steven Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar, Phys. Rev. Lett. 59, 2247. 

Rajiv V. Gavai, Sayantan Sharma, Phys.Lett.B 749 (2015) 8-13
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Thermodynamics using Lattice QCD

‣ The Taylor series of the QCD pressure at finite temperature and density: 
 

‣ Cumulants at vanishing chemical potential, 

P(T, ⃗μ )
T4 = 1

VT3 ln×QCD =
≠

∑
i, j,k=0

1
i!j!k! χBQS

ijk 𝒵μi
B 𝒵μj

Q 𝒵μk
S , 𝒵μ = μ/T

χBQS
ijk (T,0) = ∞i+j+kP/T4

∞ 𝒵μi, j,k
X μX=0

, X = B, Q, S

×QCD = ∫ ̂U det[M(mu, μu)]det[M(md, μd)] det[M(ms, μs)] e∂SG(U)

The partition function of QCD:

Real chemical potential makes the 
determinant complex,

3

and their scaling properties are understood in terms of universal properties of the QCD partition function and its
derivatives in the vicinity of the QCD chiral phase transition [7, 20]. To make use of this knowledge in a quantitative
comparison with experimental results, lattice QCD calculations close to the continuum are needed.
In this paper we present an analysis of fluctuations in, and correlations among, conserved charges using numerical

calculations in (2+1)-flavor QCD at three values of the lattice cut-off 1. For these calculations we exploit an O(a2)
improved action consisting of a tree-level improved gauge action combined with the highly improved staggered fermion
action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of our results in different temperature intervals
and consider two different zero-temperature observables for the determination of the temperature scale used for
extrapolations to the continuum limit. This allows us to quantify systematic errors in our calculation. In an appendix,
we discuss the relation between temperature scales deduced from different zero-temperature observables and the
propagation of their cut-off dependence into the cut-off dependence of thermodynamic observables.

II. FLUCTUATIONS OF CONSERVED CHARGES FROM LATTICE QCD; THE HADRON
RESONANCE GAS AND THE IDEAL GAS LIMIT

To calculate fluctuations of baryon number (B), electric charge (Q) and strangeness (S) from (lattice) QCD we
start from the QCD partition function with non-zero light (µu, µd) and strange quark (µs) chemical potentials. The
quark chemical potentials can be expressed in terms of chemical potentials for baryon number (µB), strangeness (µS)
and electric charge (µQ),

µu =
1

3
µB +

2

3
µQ ,

µd =
1

3
µB −

1

3
µQ ,

µs =
1

3
µB −

1

3
µQ − µS . (1)

The starting point of the analysis is the pressure p given by the logarithm of the QCD partition function,

p

T 4
≡

1

V T 3
lnZ(V, T, µB, µS , µQ) . (2)

Fluctuations of the conserved charges and their correlations in a thermalized medium are then obtained from its
derivatives evaluated at !µ = (µB, µQ, µS) = 0,

χ̂X
2 ≡

χX
2

T 2
=

∂2p/T 4

∂µ̂2
X

∣

∣

∣

∣

!µ=0

, (3)

χ̂XY
11 ≡

χXY
11

T 2
=

∂2p/T 4

∂µ̂X∂µ̂Y

∣

∣

∣

∣

!µ=0

, (4)

with µ̂X ≡ µX/T and X, Y = B, Q, S. Explicit expressions for the calculation of these susceptibilities in terms of
generalized light and strange quark number susceptibilities are given in [20].
As all these derivatives are evaluated at !µ = 0, the expectation values of all net charge numbers δNX ≡ NX −NX̄ ,

with NX (NX̄), denoting the number of particles (anti-particles), vanish, i.e., 〈δNX〉 = 0. The susceptibilities, i.e.,
the quadratic fluctuations of the charges, are then given by

χ̂X
2 = 〈(δNX)2〉/V T 3 . (5)

A. The hadron resonance gas

We will compare results for fluctuations and correlations defined by Eqs. (3) and (4) with hadron resonance gas
model calculations. The partition function of the HRG model can be split into mesonic and baryonic contributions,

pHRG

T 4
=

1

V T 3

∑

i∈ mesons

lnZM
Mi

(T, V, µQ, µS)

1 Preliminary results of this work had been presented at Quark Matter 2011 [24] and PANIC 2011 [25].

<latexit sha1_base64="Vsm+lJIFH3zirlYFp2/o/1I2Jb0="></latexit>

�5M
†(µq)�5 = M(�µq)

HISQ, -flavorNf = 2 + 1Partion function for (2+1)-flavor QCD,

Sign problem for, . We use Taylor expansions.μf ≠ 0, f = {u, d, s}
Rajiv V Gavai, Sourendu Gupta, Phys. Rev. D 71, 114014  
Saumen Datta, Rajiv V. Gavai, Sourendu Gupta, arXiv:1210.6784 [hep-lat] 



Quark number susceptibility and conserved 
charge fluctuations in (2+1)-flavor QCD
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In QCD with two light  and one strange flavor , pressure is 
expressed via a Taylor expansion as,

(u, d) (s)

In the context of heavy ion collision experiments there are 3 
conserved charges, B, Q and S that couples to ,μB, μQ, μS

P
T4

=
∞

∑
i,j,k=0

χBQS
ijk

i!j!k!
̂μi
B ̂μj

Q ̂μk
S .

The condition satisfy :  (strangeness neutral) and nS = 0 nQ/nB = 0.4
We satisfy this two conditions order by order: 
<latexit sha1_base64="izL6N9Tk6OGG9yKIdwFNY2TF/Bg="></latexit>

µS = s1µB + s3µ
3
B + .....

µQ = q1µB + q3µ
3
B + .....

Generalized  
susceptibilities at  

zero chemical potential
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Baryon strangeness correlations in (2+1)-
flavor QCD with HISQ fermions

D. Bollweg et al, Phys.Rev.D 110 (2024) 5, 054519

Tpc(μB) = Tpc,0 [1 − κ2 ̂μ2
B + κ4 ̂μ4

B]
The pseudo critical line from lattice QCD,

Tpc,0 = (156.5 ± 1.5) MeV and κ2 = 0.012(4)

A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019);  
B. S. Borsanyi et al, Phys. Rev. Lett. 125, 052001 (2020)

χBS
11 (T, μB /T )
χS

2(T, μB /T )
=

χBS
11 (T,0) + () ̂μ2

B + () ̂μ4
B + . . .

χS
2(T,0) + () ̂μ2

B + () ̂μ4
B + . . .



Baryon-strangness correlations

HotQCD 2024 : Phys.Rev.D 110 (2024); 
STAR results : CPOD2024
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The Lattice results agree more 
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predictions.
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QCD and STAR results are in good 
agreement for almost all the 
beam energies. 

Significant differences between 
QCD and STAR results for 

. 

The Lattice results agree more 
closely with the QMHRG2020 
predictions.

sNN = 200 GeV

J. Adam et al. (STAR), Phys. Rev. C 102, 034909 (2020);  
L. Adamczyk et al. (STAR), Phys. Rev. C 96, 044904 (2017)
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 In good agreement with  
the STAR data down to 

. 

 becomes larger than 

unity for . 

Consistent with QCD but not 
consistent with non 
interacting HRG.

s
NN

≃ 11.5 GeV

Rp
12

s
NN

≃ 17.3 GeV

RB
12 = MB/σ2

B =
χB

1

χB
2



Higher order baryon number fluctuation
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RX
31 = SX

0 + SX
2 (RX

12)2

RX
42 = KX

0 + K2(RX
12)

2

QCD and STAR results are in 
good agreement for 

 GeV.sNN ≥ 19.6

 QCD results and 
quadratic fit to STAR results for 

and  agree well on 
curvature coefficient.

𝒪((RB
12)2)

Rp
31 Rp

42

 

May suggest  is slightly smaller than 

Sp
0 = 0.80(1) , SB

0 = 0.70(1) , Kp
0 = 0.77(6) ; KB

0 = 0.705(1)
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LO Kurtosis of electric charge and strangness 
correlations
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Searching for the QCD CEP with LYEs 
singularities

Thermodynamics using Lattice QCD

‣ The Taylor series of the QCD pressure at finite temperature and density: 
 

‣ Cumulants at vanishing chemical potential, 

P(T, ⃗μ )
T4 = 1

VT3 ln×QCD =
≠

∑
i, j,k=0

1
i!j!k! χBQS

ijk 𝒵μi
B 𝒵μj

Q 𝒵μk
S , 𝒵μ = μ/T

χBQS
ijk (T,0) = ∞i+j+kP/T4

∞ 𝒵μi, j,k
X μX=0

, X = B, Q, S

×QCD = ∫ ̂U det[M(mu, μu)]det[M(md, μd)] det[M(ms, μs)] e∂SG(U)

The partition function of QCD:

Real chemical potential makes the 
determinant complex,

3

and their scaling properties are understood in terms of universal properties of the QCD partition function and its
derivatives in the vicinity of the QCD chiral phase transition [7, 20]. To make use of this knowledge in a quantitative
comparison with experimental results, lattice QCD calculations close to the continuum are needed.
In this paper we present an analysis of fluctuations in, and correlations among, conserved charges using numerical

calculations in (2+1)-flavor QCD at three values of the lattice cut-off 1. For these calculations we exploit an O(a2)
improved action consisting of a tree-level improved gauge action combined with the highly improved staggered fermion
action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of our results in different temperature intervals
and consider two different zero-temperature observables for the determination of the temperature scale used for
extrapolations to the continuum limit. This allows us to quantify systematic errors in our calculation. In an appendix,
we discuss the relation between temperature scales deduced from different zero-temperature observables and the
propagation of their cut-off dependence into the cut-off dependence of thermodynamic observables.

II. FLUCTUATIONS OF CONSERVED CHARGES FROM LATTICE QCD; THE HADRON
RESONANCE GAS AND THE IDEAL GAS LIMIT

To calculate fluctuations of baryon number (B), electric charge (Q) and strangeness (S) from (lattice) QCD we
start from the QCD partition function with non-zero light (µu, µd) and strange quark (µs) chemical potentials. The
quark chemical potentials can be expressed in terms of chemical potentials for baryon number (µB), strangeness (µS)
and electric charge (µQ),

µu =
1

3
µB +

2

3
µQ ,

µd =
1

3
µB −

1

3
µQ ,

µs =
1

3
µB −

1

3
µQ − µS . (1)

The starting point of the analysis is the pressure p given by the logarithm of the QCD partition function,

p

T 4
≡

1

V T 3
lnZ(V, T, µB, µS , µQ) . (2)

Fluctuations of the conserved charges and their correlations in a thermalized medium are then obtained from its
derivatives evaluated at !µ = (µB, µQ, µS) = 0,

χ̂X
2 ≡

χX
2

T 2
=

∂2p/T 4

∂µ̂2
X

∣

∣

∣

∣

!µ=0

, (3)

χ̂XY
11 ≡

χXY
11

T 2
=

∂2p/T 4

∂µ̂X∂µ̂Y

∣

∣

∣

∣

!µ=0

, (4)

with µ̂X ≡ µX/T and X, Y = B, Q, S. Explicit expressions for the calculation of these susceptibilities in terms of
generalized light and strange quark number susceptibilities are given in [20].
As all these derivatives are evaluated at !µ = 0, the expectation values of all net charge numbers δNX ≡ NX −NX̄ ,

with NX (NX̄), denoting the number of particles (anti-particles), vanish, i.e., 〈δNX〉 = 0. The susceptibilities, i.e.,
the quadratic fluctuations of the charges, are then given by

χ̂X
2 = 〈(δNX)2〉/V T 3 . (5)

A. The hadron resonance gas

We will compare results for fluctuations and correlations defined by Eqs. (3) and (4) with hadron resonance gas
model calculations. The partition function of the HRG model can be split into mesonic and baryonic contributions,

pHRG

T 4
=

1

V T 3

∑

i∈ mesons

lnZM
Mi

(T, V, µQ, µS)

1 Preliminary results of this work had been presented at Quark Matter 2011 [24] and PANIC 2011 [25].

<latexit sha1_base64="Vsm+lJIFH3zirlYFp2/o/1I2Jb0="></latexit>

�5M
†(µq)�5 = M(�µq)

HISQ, -flavorNf = 2 + 1
Partion function for (2+1)-flavor QCD,

P
T4

=
∞

∑
i,j,k=0

χBQS
ijk

i!j!k!
̂μi
B ̂μj

Q ̂μk
S

Padé approximant : Possible extension of the Taylor series for exploring the 
low temperature and high density part of the QCD phase diagram.

EoS : D. Bollweg et al(HotQCD coll.), Phys.Rev.D 108 (2023),  
JG (HotQCD coll.),  PoS LATTICE2022 (2023) 149, 

JG QM2022



Searching for CEP using Padé approximants

f(x) =
n

∑
i=0

cixi

We only have finite number of Taylor 
coefficients.

13

• Lee Yang : Phase transitions are related to singularities of the Taylor 
series on the real axis. 

• Padé approximants : Rational functions of the form,   , 

• Singularities : Solving the denominators. 

• Furthermore, LYE singularities exhibit universal scaling behavior 
near a critical point

f (x) =

a
∑
i=0

cixi

1 +
b

∑
j=1

djx j

Complex zeros of the partition 
function 

Investigate the universal scaling of 
the zeros of the partition function.  
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Location of the critical point at finite  ??μB

• Lee-yang theorem: Singularity in the real axis is a hint for a critical point. 

• We find no indication of a CEP in almost the entire beam energy (  ) 
range covered by BESII in collider mode.

s

0 1 2 3 4 5
Re µ̂+

B,c

°4

°2

0

2

4

Im
µ̂

+ B
,c

iº

°iº

nS = 0, nQ/nB = 0.5

T=135

T=140

T=145

T=150

T=155

T=160

T=165

Singularity of the 
pressure series 

using a [4,4] 
padè 

constructed from 
8th order Taylor 

series 

Bound for CEP : 
 TCEP < 135 MeV, ̂μB/T ≥ 2.5

Expectation : 
 

( )

TCEP < Tchiral
Tchiral ∼ 130 MeV

H.T. Ding et al, 
Phys.Rev.Lett. 123 (2019) 6, 062002

D. Bollweg et. al (HotQCD collaboration), Phys.Rev.D 105 (2022) 7, 074511,
J. G et. al (HotQCD collaboration), Acta Phys.Polon.Supp. 16 (2023) 1, 76



Searching for the QCD CEP with LYEs 
singularities

Thermodynamics using Lattice QCD

‣ The Taylor series of the QCD pressure at finite temperature and density: 
 

‣ Cumulants at vanishing chemical potential, 

P(T, ⃗μ )
T4 = 1

VT3 ln×QCD =
≠

∑
i, j,k=0

1
i!j!k! χBQS

ijk 𝒵μi
B 𝒵μj
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×QCD = ∫ ̂U det[M(mu, μu)]det[M(md, μd)] det[M(ms, μs)] e∂SG(U)

The partition function of QCD:

Real chemical potential makes the 
determinant complex,

3

and their scaling properties are understood in terms of universal properties of the QCD partition function and its
derivatives in the vicinity of the QCD chiral phase transition [7, 20]. To make use of this knowledge in a quantitative
comparison with experimental results, lattice QCD calculations close to the continuum are needed.
In this paper we present an analysis of fluctuations in, and correlations among, conserved charges using numerical

calculations in (2+1)-flavor QCD at three values of the lattice cut-off 1. For these calculations we exploit an O(a2)
improved action consisting of a tree-level improved gauge action combined with the highly improved staggered fermion
action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of our results in different temperature intervals
and consider two different zero-temperature observables for the determination of the temperature scale used for
extrapolations to the continuum limit. This allows us to quantify systematic errors in our calculation. In an appendix,
we discuss the relation between temperature scales deduced from different zero-temperature observables and the
propagation of their cut-off dependence into the cut-off dependence of thermodynamic observables.

II. FLUCTUATIONS OF CONSERVED CHARGES FROM LATTICE QCD; THE HADRON
RESONANCE GAS AND THE IDEAL GAS LIMIT

To calculate fluctuations of baryon number (B), electric charge (Q) and strangeness (S) from (lattice) QCD we
start from the QCD partition function with non-zero light (µu, µd) and strange quark (µs) chemical potentials. The
quark chemical potentials can be expressed in terms of chemical potentials for baryon number (µB), strangeness (µS)
and electric charge (µQ),

µu =
1

3
µB +

2

3
µQ ,

µd =
1

3
µB −

1

3
µQ ,

µs =
1

3
µB −

1

3
µQ − µS . (1)

The starting point of the analysis is the pressure p given by the logarithm of the QCD partition function,

p

T 4
≡

1

V T 3
lnZ(V, T, µB, µS , µQ) . (2)

Fluctuations of the conserved charges and their correlations in a thermalized medium are then obtained from its
derivatives evaluated at !µ = (µB, µQ, µS) = 0,

χ̂X
2 ≡

χX
2

T 2
=

∂2p/T 4

∂µ̂2
X

∣

∣

∣

∣

!µ=0

, (3)

χ̂XY
11 ≡

χXY
11

T 2
=

∂2p/T 4

∂µ̂X∂µ̂Y

∣

∣

∣

∣

!µ=0

, (4)

with µ̂X ≡ µX/T and X, Y = B, Q, S. Explicit expressions for the calculation of these susceptibilities in terms of
generalized light and strange quark number susceptibilities are given in [20].
As all these derivatives are evaluated at !µ = 0, the expectation values of all net charge numbers δNX ≡ NX −NX̄ ,

with NX (NX̄), denoting the number of particles (anti-particles), vanish, i.e., 〈δNX〉 = 0. The susceptibilities, i.e.,
the quadratic fluctuations of the charges, are then given by

χ̂X
2 = 〈(δNX)2〉/V T 3 . (5)

A. The hadron resonance gas

We will compare results for fluctuations and correlations defined by Eqs. (3) and (4) with hadron resonance gas
model calculations. The partition function of the HRG model can be split into mesonic and baryonic contributions,

pHRG

T 4
=

1

V T 3

∑

i∈ mesons

lnZM
Mi

(T, V, µQ, µS)

1 Preliminary results of this work had been presented at Quark Matter 2011 [24] and PANIC 2011 [25].
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�5M
†(µq)�5 = M(�µq)

HISQ, -flavorNf = 2 + 1
Partion function for (2+1)-flavor QCD,

Sign problem for, real  however, one can do calculations with purely 

imaginary .

μf

iμf
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(TCEP, μCEP) = (105+8
−18,422+80

−35) MeV
David A. Clarke et al, arXiv:2405.10196 [hep-lat]

Caution :This results are not 
continuum extrapolated!!



Summary and Conclusions

• We present comparisons of conserved charge 
fluctuations using (2+1)-flavor lattice QCD and STAR 
results. 

• We also present estimation of QCD CEP from LYEs.

Thank you for your attention !!


