Recent results from lattice QCD on the phase diagram **Jishnu Goswami**

13/01/2025 Plenary

10th Asian Triangle Heavy-Ion Conference -ATHIC 2025 Indian Institute of Science Education and Research Berhampur

QCD phase diagram

"Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan", Bzdaket al., Phys. Rept. '20

QCD phase diagram

"Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan", Bzdaket al., Phys. Rept. '20

Motivation: Understand the thermodynamics at the QCD chiral transition and exploration of the QCD phase diagram with lattice QCD numerical simulation.

 $\mathcal{E}_{QCD} = \int \mathcal{D} U \, dep \, \mathcal{D} U \, dep \, \mathcal{D} \, \mathcal{D}$

case in second order susceptibility: CTUATIONS OF CONSERVED CHAI RESONANCE GAS AND

The prescription $f_{0}(p) = p_{0}(p) + p_{0}(p)$ the lattice, To calculate fluctuations of baryon number (B), electric $(1 \pm \gamma_4)U_{\pm 4}(x) \rightarrow \text{the LQQD} \text{partition function with non-zero light}$ quark chemical potentials can be expressed in terms of chemical No $P(\vec{d},\vec{\mu},\vec{p})$ and \vec{d} we define the providence of the $\mu_u = \frac{1}{3}\mu_B + \frac{1}{3}\mu_B$ Sign problem for, $\mu_f \neq 0$, $f = \{u, d, s\}$. We use Taylor expansion $\mathfrak{S}_d = \frac{1}{3}\mu_B - \frac{\partial^{i+j+k}P/T^4}{\partial r^{i+j+k}P/T^4}$ Rajz (Tol)at; Sourendu Gupta XPhy B., Rev D 71, 114014 Saumen Datta, Rajiv V. Gavendu Gupta, arXiv:1210.6784 [hep-lat] $\mu_B = \mu_B - \mu_B$ The starting point of the application is the program of the

Quark number susceptibility and conserved charge fluctuations in (2+1)-flavor QCD

In QCD with two light (u, d) and one strange flavor (s), pressure is expressed via a Taylor expansion as,

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{\chi^{BQS}_{ijk}}{i!j!k!} \hat{\mu}^i_B \hat{\mu}^j_Q \hat{\mu}^k_S.$$

Generalized susceptibilities at zero chemical potential

In the context of heavy ion collision experiments there are 3 **conserved charges**, **B**, **Q** and **S** that couples to μ_B , μ_Q , $\mu_{S'}$

The condition satisfy : $n_S = 0$ (strangeness neutral) and $n_Q/n_B = 0.4$

We satisfy this two conditions order by order:

 $\mu_S = s_1 \mu_B + s_3 \mu_B^3 + \dots$

 $\mu_Q = q_1 \mu_B + q_3 \mu_B^3 + \dots$

Baryon strangeness correlations in (2+1)flavor QCD with HISQ fermions

D. Bollweg et al, Phys.Rev.D 110 (2024) 5, 054519

The pseudo critical line from lattice QCD, $T_{pc}(\mu_B) = T_{pc,0} \begin{bmatrix} 1 - \kappa_2 \hat{\mu}_B^2 + \kappa_4 \hat{\mu}_B^4 \end{bmatrix}$ A. Bazavov B. S. Bors $T_{pc,0} = (156.5 \pm 1.5) \text{ MeV}$ and $\kappa_2 = 0.012(4)$ $\frac{\chi_{11}^{BS}(T, \mu_B/T)}{\chi_2^S(T, \mu_B/T)} = \frac{\chi_{11}^{BS}(T, 0) + ()\hat{\mu}_B^2 + ()\hat{\mu}_B^4 + \dots}{\chi_2^S(T, 0) + ()\hat{\mu}_B^2 + ()\hat{\mu}_B^4 + \dots}$

A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019);
B. S. Borsanyi et al, Phys. Rev. Lett. 125, 052001 (2020)

Baryon-strangness correlations

QCD and STAR results are in good agreement for $\sqrt{s_{NN}} \ge 39$ GeV.

Significant differences between QCD and STAR results for

 $\sqrt{s_{NN}} \le 27 \text{ GeV}.$

The Lattice results agree more closely with the QMHRG2020 predictions.

HotQCD 2024 : *Phys.Rev.D* 110 (2024); STAR results : CPOD2024

Ratio of μ_S/μ_B

J. Adam et al. (STAR), Phys. Rev. C 102, 034909 (2020); L. Adamczyk et al. (STAR), Phys. Rev. C 96, 044904 (2017) QCD and STAR results are in good agreement for almost all the beam energies.

Significant differences between QCD and STAR results for $\sqrt{s_{NN}} = 200 \text{ GeV}.$

.5 The Lattice results agree more closely with the QMHRG2020 predictions.

Baryon number fluctuations

HotQCD 2017, 2020 : PRD; Goswami, Karsch , XQCD 2024 STAR results : CPOD2024

Higher order baryon number fluctuation

$$S_0^p = 0.80(1), S_0^B = 0.70(1), K_0^p = 0.77(6); K_0^B = 0.705(1)$$

May suggest T_{pc} is slightly smaller than T_f

HotQCD 2017, 2020 : PRD; Goswami, Karsch , XQCD 2024 STAR results : CPOD2024

LO Kurtosis of electric charge and strangness correlations

Calculations with a chiral symmetric fermions, Möbius Domain Wall fermions.

 $R_{42}^Q = 1 \pm 0.53$, for T = 154.6 MeV. $R_{42}^Q = 1.05 \pm 0.49$, for T = 149.7 MeV

The results are preliminary and not continuum extrapolated.

Jishnu Goswami et al, arXiv:2501.03509

Acknowledgments :

Supercomputer Fugaku(HPCIprojecthp240295, hp230207, hp200130, hp210165, hp220174 and Usability Research ra000001). MEXT as "Program for Promoting Researches on the Supercomputer Fugaku", *Simulation for basic science: from fundamental laws of particles to creation of nuclei*, JPMXP1020200105; "Simulation for basic science: approaching the quantum era" (JPMXP1020230411). JICFuS.

action (HISQ/tree) [26, 27]. We discuss the cut-off dep and co**Singularities**t zero temperature observables Partion function extrapolations to the continuum limit. This allows us to qua $\frac{P}{T^4} = \sum_{\substack{ijk \\ jjk \\$ $\frac{T, \vec{\mu}}{T^4} = \frac{1}{\mathbf{E}_{o} \mathbf{F}_{f}^{\mathsf{D}} \mathbf{E}_{o}^{\mathsf{D}} \mathbf{F}_{e}^{\mathsf{D}} \mathbf{E}_{o}^{\mathsf{D}} \mathbf{E}_{o}^{\mathsf{D}} \mathbf{F}_{e}^{\mathsf{D}} \mathbf{E}_{o}^{\mathsf{D}} \mathbf{E}_{o}^{\mathsf{$ $\underline{P(T, \overrightarrow{\mu})}$ $\mu_u = \frac{1}{3}\mu_B + \frac{1}{3}\mu_B - \frac{1}{3}\mu_B$ **JG QM2022** $\chi^{BQS}_{ijk}(T,0) = \frac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^{i,j,k}_X} \qquad , X = B, Q, S$ $\mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_B$

The starting point of the analysis is the pressure p given b

Searching for CEP using Padé approximants

We only have finite number of Taylor coefficients.

$$f(x) = \sum_{i=0}^{n} c_i x^i$$

- Lee Yang : Phase transitions are related to singularities of the Taylor series on the real axis.
- Padé approximants : Rational functions of the form, $f(x) = \frac{\sum_{i=0}^{a} c_i x^i}{1 + \sum_{j=1}^{b} d_j x^j}$,
- Singularities : Solving the denominators.
- Furthermore, LYE singularities exhibit universal scaling behavior near a critical point

Complex zeros of the partition ______ Investigate the universal scaling of the partition function.

- Lee-yang theorem: Singularity in the real axis is a hint for a critical point.
- We find no indication of a CEP in almost the entire beam energy (\sqrt{s}) range covered by BESII in collider mode.

Searching for the one of the one of the second second action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of the continuum limit. This allows us to quark we discuss the relation between temperature scales dedu $\mathcal{Z}_{QCD} =$

Sign problem for, real μ_f however, one can do calculations with purely II. FLUCTUATIONS OF CONSERVED CHAIN imaginary $i\mu_f$.

The starting point of the analysis is the pressure p given b

Summary and Conclusions

- We present comparisons of conserved charge fluctuations using (2+1)-flavor lattice QCD and STAR results.
- We also present estimation of QCD CEP from LYEs.

Thank you for your attention !!

· IIIMIM JOH JOH JOHI MILAIIMI