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Outline
• Part I: Out-of-equilibirum dynamics in early stages of heavy-ion collisions

• Part II: Out-of-equilibirum dynamics near a critical point

• Competition between interactions that try to establish local thermal equilibrium and   
rapid expansion of the medium which forbids it.

• Even if a dynamic system is in local thermal equilibrium, it will fall out of 
equilibrium as a critical point is approached (critical slowing down).

• In both these cases, suitable extensions of hydrodynamic-like theories 
may be useful to model the dynamics.
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The ‘standard model’ of heavy-ion collisions
• Collision of highly Lorentz-

contracted nuclei. 

• Deposition of kinetic energy, 
liberation of quarks, gluons: 
formation of quark-gluon plasma.

• Many interesting questions on 
QGP pertain to dynamics.

• How the plasma flows: 
transport coefficients η/s, ζ/s

• How flow is reached: isotropization, 
hydrodynamization, thermalization

Need a dynamical description of the plasma
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“Hydrodynamization” 

τ ∼ 0 fm/c τ ∼ 1 fm/c

• If weakly-coupled, can be described in terms of quasi-particles using kinetic theory.

• The system formed is initially far from local thermal equilibrium; characterized by large 
spatial gradients 

• If strongly coupled, quasi-particle description does not hold; approaches such as holography 
needed.  super Yang-Mills theory used.𝒩 = 4

• Key question: Is the system weakly coupled or strongly coupled?

For hydrodynamics to apply, 
system must be close to 
local thermal equilibrium 

(Typical starting time for hydro)

Mazeliauskas & Berges, Heller et al, Romatschke, Schenke 
et al, Kurkela and Wiedemann 

Keegan et al, JHEP (2016)

(This talk)

Chester, Yaffe, Heller, Janik, van Der Schee, and others
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Kinetic theory
• Models microscopic behavior of constituents; collisions/scattering. No assumption of local 

thermal equilibrium. Thus, applicable both near and far from local equilibrium.

• Evolution of  governed by Boltzmann equation: f(t, ⃗x, ⃗p)
Ep∂t f + ⃗p ⋅ ⃗∇ f = 𝒞[ f ]

Assumption: mean-free path and relaxation timescales long compared to interaction timescales. 

• Conserved macroscopic quantities  related to (Tμν, Jμ) f(x, p)

Tμν(x) = ∫p
pμ pν f(x, p) Jμ(x) = ∫p

pμ f(x, p)

(describes free-
streaming) interactions; 

scatterings

• A useful model for early-time dynamics in HIC: Bjorken flow

vx = vy = 0, vz = z /t Simplified stresses, Tμν = diag(e, PT, PT, PL)
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Kinetic theory
• Models microscopic behavior of constituents; collisions/scattering. Unlike hydro, does not 

assume local thermal equilibrium. Applicable both near and far from local equilibrium.

• Evolution of  governed by Boltzmann equation: f(t, ⃗x, ⃗p) pμ∂μ f = 𝒞[ f ]

Assumption: mean-free path and relaxation timescales long compared to interaction timescales. 

Elastic 
scattering 

Inelastic 
scattering 

• QCD kinetic theory in Bjorken flow

Arnold, Moore, Yaffe, 
JHEP (2003)

Kurkela, Mazeliauskas, 
Paquet, Schlichting, Teaney

PL /P

Almaalol et al PRL (2020)

hydro

• Effective longitudinal pressure  drops rapidly at  PL τ/τR ≪ 1



Kinetic theory: Toy model
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∂f
∂t

−
pz

t
∂f

∂pz
= −

1
τR

(f − feq)

Kinetic theory describes transition from collision-less regime to hydro regime 
(dominated by collisions)

Acts like an external force 
 shrinks momentum 

distribution along 
⟹

pz Competition between 

CollisionsExpansion ⟹ ⟹

PL = ∫
p2

z

Ep
f PT =

1
2 ∫

p2
T

Ep
f

Longitudinal 
pressure

Transverse 
pressure

• Many features of early stages can be captured in a toy model (relaxation-time approximation)

Isotropizes momenta



Kinetic theory using moments
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• Too much information in the full distribution function. Focus on particular moments of f(τ, ⃗p)

ℒn(τ) ≡ ∫p
p2 P2n(cos θ) f(τ, ⃗p)

Energy-momentum tensor is described by first 
two moments: , ℒ0 = e ℒ1 = PL − PT

• The moments satisfy coupled equations

dℒ0

dτ
= −

1
τ [a0ℒ0 + c0ℒ1]

dℒn

dτ
= −

1
τ [anℒn + bnℒn−1 + cn ℒn+1] −

ℒn

τR

(Free-streaming) (Collisions)

• Collisionless regime characterized by two fixed points (one stable, one unstable): Stable FP 
.PL /e → 0

Kurkela, van der Schee, 
Wiedemann, Wu, PRL (2020)

Blaizot and Yan, PLB (2018)

(Expansion 
dominated)

(Interaction 
dominated)



Israel-Stewart hydro and moments
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• The moments equations contains Israel-
Stewart like “hydro” (ISH) (truncate at n = 1 )

dℒ0

dτ
= −

1
τ [a0ℒ0 + c0ℒ1]

dℒ1

dτ
= −

1
τ [a1ℒ1 + b1ℒ0 + c1 ℒ2] −

ℒ1

τR

Free-streaming Collisions

• ISH are extensively used in heavy-ion simulations.

Kurkela, van 
der Schee, 
Wiedemann, 
Wu, PRL 
(2020)

(Negative pressure!)

Kinetic theory

Israel-Stewart hydro

• ISH captures qualitative features of far-off-
equilibrium dynamics.  

• By modifying a coefficient to reproduce fixed point 
in collisionless regime, one can obtain nice 
matching with kinetic theory. Blaizot and Yan



The Maximum-Entropy framework 
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·e = − (e + P + Π) ∇μuμ + πμν ∇(μuν)

• To evolve components of Tμν = e uμ uν − (P + Π) Δμν + πμν

(e + P + Π) ·uμ = ∇μP + ⋯

·π⟨μν⟩ +
πμν

τR
= 2 η ∇⟨μ uν⟩ −

4
3

πμν ∇μuμ⋯ − 2 ρμναβ
(−2) ∇αuβ

(energy density evolution)

(velocity evolution)

(shear evolution)

Similar eq. for bulk pressure

C.C., Heinz, Schaefer, PRC 108 (2023), 034907

• Need an evolution equation for .  This leads to an infinite tower of coupled equations. 

Requires truncation, i.e., to construct  using knowledge of .

ρμναβ
(−2)

f(x, p) Tμν

• How to formulate a (3+1)-d far-from-equilibrium macroscopic theory? Transverse 
gradients will also initiate flow. Fixed points not known apriori, should work irrespective of 
symmetries of flow.

Denicol, Niemi, Molnar, Rischke PRD (2012), 
Jaiswal, Bhalerao, Pal (2014)



The maximum-entropy distribution
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s[ f ] = − ∫ dP (u ⋅ p) (f log( f ) − f)

The least biased distribution that uses all of, and only the information provided by  is the 
one that maximizes the non-equilibrium entropy

Tμν

subject to constraints that f(x,p) satisfies,

∫ dP (u ⋅ p)2 f = e, −
1
3 ∫ dP p⟨μ⟩ p⟨μ⟩ f = P + Π, ∫ dP p⟨μ pν⟩ f = πμν

Introduce Lagrange multipliers  corresponding to constraints and solve for 

the functional derivative  

(Λ, λΠ, γ⟨μν⟩)
δs[ f ]

δf
= 0

E. Jaynes, Phys. Rev. 106, 620 (1957)

fME = exp [−Λ (u ⋅ p) +
λΠ

u ⋅ p
p⟨α⟩p⟨α⟩ −

γ⟨αβ⟩

u ⋅ p
p⟨αpβ⟩]

C.C., Heinz, Schaefer, PRC 108 (2023), 034907, 
Everett, C.C., Heinz, PRC (2021), 064902



Features of Max-Entropy distribution
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• Positive-definite for all momenta

• Non-linear dependence on shear and bulk stresses 

• Reduces to the Chapman-Enskog  in the limit of small viscous stresses.δf

• Ensuing dynamical framework consistent with the second-law.

fME = exp [−Λ Ep +
λΠ

Ep
⃗p2 −

γ⟨ij⟩

u ⋅ p
p⟨ipj⟩]In the fluid rest-frame

Plays role similar to 
an inverse 
temperature Isotropic 

deviation from 
equilibrium

Anisotropic deviation 
from equilibrium

See also, “Maximum-
entropy freezeout” by 
Pradeep and 
Stephanov, PRL (2023)



Standard Israel-Stewart hydro
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• Standard hydro is not in good agreement with kinetic 
theory at large Knudsen numbers.  

• Does not describe early time universality accurately

S. Jaiswal, C.C., et al, PRC 105, 024911 (2022)



Maximum-Entropy framework
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• Max-Ent is in good agreement with kinetic theory even 
at large Knudsen numbers. 

C.C., Heinz, Schaefer, PRC 108 
(2023), 034907

• Accurately describes early time universality.
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Summary: Part I (out of equilibrium dynamics in initial stages of HIC)

• If the pre-hydrodynamic evolution admits a kinetic theory description, Israel-Stewart like 
“hydro” frameworks may capture certain aspects of the macroscopic dynamics even 
far-from-equilibrium.

• The framework of maximum-entropy may serve as a proxy for kinetic theory as far as 
describing evolution of  is concerned. Need for (3+1)-d simulations to test this 
expectation.

(Tμν, Jμ)
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Part II: Out-of-equilibrium dynamics near a critical point 



• Long-term goal of BES: Identify signatures of a 
possible critical end point of QCD using heavy-
ion collisions. 

• Near a critical point, fluctuations become 
dominant. But fluctuations not equilibrated as 
fireball is rapidly expanding. 

• Need for a dynamical theory of critical 
fluctuations. 

• Fluid dynamics should still be applicable, but 
with appropriate modifications:                   

• Inclusion of thermal fluctuations, slow 
dynamics of order parameter, and 
criticality in equation of state.

Out-of-equilibrium dynamics near critical point

16

C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019)

Talks by B. Mohanty, A. Pandav

Talk by M. Pradeep

Talk by J. Goswami



• Dynamics of critical fluctuations are 
universal. 

• Hence, study QCD critical dynamics using 
the simplest system from the same dynamic 
universality class. 

• Universality class depends on  

• Order parameter being conserved/non-
conserved. 

• Coupling of order parameter to other 
slow modes, eg, hydrodynamic modes. 

• QCD critical point shares the same static 
universality class as the 3d Ising Model

Critical Dynamics

17



The basic idea
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• The properties of a fluid are defined by slow, macroscopic degrees of freedom: 
conserved densities, i.e., densities of energy, momentum, or any conserved charge.

• If a fluid is near a critical point, the dynamics of its order parameter becomes slow 
(critical slowing down). Must be included in the hydrodynamic description.

• The macroscopic fields fluctuate as they couple to microscopic degrees of freedom. 

• The theory to be solved is then stochastic hydrodynamics coupled to an order parameter. 

• Such theories are classified by Hohenberg & Halperin: purely relaxational 
dynamics (Model A), critical diffusion (Model B), critical anti-ferromagnet 
(Model G), critical diffusion coupled to Navier-Stokes (Model H).

relevant to QCD
Rajagopal and Wilczek

Son and Stephanov

Hohenberg & 
Halperin



Previous works

Stephanov, Yin, X. An, Akamatsu, Teaney, Mazeliaukas, F. Yan, H. U. Yee, Martinez, Schaefer… 

M. Nahrgang et al., G. Pihan et al. , M. Bluhm, L. Du, Heinz and others

• Use framework of non-critical stochastic hydro and include criticality in EOS and 
transport coefficients.

• Deterministic approaches: The above framework can be used in linearized regime to 
write deterministic eqs for n-point equal time functions: Hydro+, Hydro++, hydro-kinetics.

• Extend them to critical regime by replacing susceptibilities and relaxation-rates by 
their critical expectations. Numerical studies of one-dimensional expanding systems.

• Not many studies of direct simulation of critical fluid dynamics. A novel approach to 
simulate stochastic dynamics based on Metropolis has been recently formulated.

Florio, Grossi, Soloviev, Teaney, Schaefer, Skokov, Basar, 
Bhambure, Singh, Newhall et al 19



Stochastic dynamics: deterministic approach
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• Hydro equations are conservation eqs: ∂μTμν = 0, ∂μJμ = 0

∂t ψ = − ∇ ⋅ Flux[ψ]

• Stochastic variables   are local operators coarse-grained (over cells b: )ψ̃ = (T̃0i, J̃0) (l ≪ b ≪ L)

∂t ψ̃ = − ∇ ⋅ (Flux[ψ] + Noise)

Stephanov, Yin, X. An, Basar, Akamatsu, 
Teaney, Mazeliaukas, F. Yan, H. U. Yee, 
Martinez, Schaefer… 

Landau-Lifshitz

• Now, variables are one-point and two-point functions:

ψ = ⟨ψ̃⟩ and G = < ψ̃ ψ̃ > − < ψ̃ > < ψ̃ > (Equal time correlation)

• Due to non-linearities fluxes depend on G 

∂t ψ = − ∇ ⋅ Flux[ψ, G] (Conservation) ∂tG = L[G; ψ] (Relaxation)

• Typically, the slowest hydro mode is included  where Approach 
used in expanding systems

G = ⟨δm(x1) δm(x2)⟩ m = s/n .
Akamatsu et al, Rajagopal, Ridgway, Weller, Yin, M. Nahrgang et al., G. 
Pihan et al. , M. Bluhm, L. Du, Heinz and others



Stochastic dynamics: numerical approach

• First: critical diffusion of a conserved order parameter (Model B) 

• Simulation of diffusive dynamics using a Metropolis algorithm 

• Dynamic scaling in Model B

• Second: Coupling of the conserved order parameter to hydrodynamic modes (Model H) 

• Modification to dynamic scaling behavior compared to Model B

• Effective shear viscosity of the fluid

21



Model B

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]

∂ϕ
∂t

+ ⃗∇ ⋅ ⃗j = 0,   the current ⃗j = −Γ ⃗∇
δF
δϕ

+ ⃗ξ

⟨ξi(t, ⃗x) ξj(t′￼, ⃗x′￼)⟩ = 2 Γ T δij δ(t − t′￼) δ3( ⃗x − ⃗x′￼)

• Consider the Ising model. Coarse grain the spin (microscopic) degrees of freedom to obtain an 
order parameter  (magnetization density).ϕ(x)

• The statics of the system near the critical point (small )  is governed by an effective free-
energy functional (Ginzburg-Landau)

ϕ

• Dynamics: If the order parameter is conserved, its evolution may be 
modeled as

Noise
Noise ensures fluctuation-
dissipation

Diffusion

22



Metropolis step

• Choose trial updates at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• Compute the change in free energy due to 
these updates

qμ = 2 Γ T Δt ξμ

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]

(conserves )ϕ

23

• Accept with probability P = min(1, exp(−ΔF/T))



The Metropolis scheme
• The Metropolis update reproduces the flux on average, and also its variance 

• Probability of a new configuration, 

• The equilibrium distribution  is sampled even if  is not small. 

• If  is not small, the diffusion eq. is approximately realized. 

exp(−F[ϕ]/T) Δt

Δt

⟨ ⃗q⟩ = − Δt Γ ⃗∇
δF
δϕ

+ 𝒪(Δt2)

⟨ ⃗q2⟩ = 2Γ T Δt + 𝒪(Δt2)

P (ϕ(t, ⃗x) → ϕnew(t, ⃗x)) ∼ exp [−(F[ϕnew] − F[ϕ])]

irrespective of order of updates. 

24



Results: Dynamic scaling
• Scaling Hypothesis: Near a critical point 

the dynamic correlator,  ⟨ϕ(0, k) ϕ(t, − k)⟩

G(t, k) = G̃(t/ξz, kξ)
 is a universal function.G̃

• At the critical point , thus  
obtained in different volumes should 
collapse  

ξ ∼ L G(t, k)

G(t, k = 2π/L) → G̃ ( t
Lz

,2π)
if time is scaled by .Lz

Data collapse occurs for . Theoretical 
expectation 

z ≈ 3.97
z = 4 − η, η ≈ 0.03 •  is the dynamic scaling exponentz 25

C.C., J. Ott, T. Schaefer, V. Skokov (PRD 108 
(2023) 074004)



Critical dynamics in Model H

∂ϕ
∂t

= Γ ∇2 δH
δϕ

− (∇ϕ ⋅
δH
δ ⃗πT ) + ζ

∂ ⃗πT

∂t
= η ∇2 δH

δ ⃗πT
+ ( ⃗∇ ϕ) ⋅

δH
δϕ

− ( δH
δ ⃗πT

⋅ ⃗∇ ) ⃗πT + ⃗ξ

H = ∫ d3x [ ⃗π2
T

2ρ
+

1
2 ( ⃗∇ ϕ)

2
+

1
2

m2ϕ2 +
λ
4

ϕ4]

• Couple the order parameter  to a fluid’s momentum density ϕ ⃗π

• Stochastic evolution equation of the momentum density

• The Hamiltonian

diffusion advection noise

diffusion advection noiseStress 
energy of ϕ

26
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Coupling to a fluid (Model H)

∂ϕ
∂t

= Γ ∇2 δH
δϕ

− (∇ϕ ⋅
δH
δπT ) + ζ

∂ ⃗πT

∂t
= η ∇2 δH

δ ⃗πT
+ ( ⃗∇ ϕ) ⋅

δH
δϕ

− ( δH
δ ⃗πT

⋅ ⃗∇ ) ⃗πT + ⃗ξ

H = ∫ d3x [ ⃗π2
T

2ρ
+

1
2 ( ⃗∇ ϕ)

2
+

1
2

m2ϕ2 +
λ
4

ϕ4]

• Couple the order parameter to a fluid’s momentum density ⃗π

• Evolution equation of the momentum density

• The Hamiltonian

Assumptions: 

• Non-relativistic fluid 

• The momentum density is 
transverse  

There are shear waves but 
no sound. No coupling to 
energy density or pressure.

⃗∇ ⋅ ⃗π = 0



Model H simulations

Order parameter field in 3d Order parameter + velocity field in 2d

Simulations by Josh Ott
28

• Evolution consists of both stochastic/dissipative and conservative parts.

• Use Metropolis for the stochastic/dissipative update. C.C., J. Ott, T. Schaefer, V. Skokov, 
arXiv:2411.15994 



Effective viscosity

ηR = η +
7

60π2

ρTΛ
η

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⃗∇ ϕ∇2ϕ + ⃗ξ

The “stickiness of shear”

Self-advection dominates

Thermal fluctuations + Non-linearity of hydro

shear viscosity has a minimum⟹

Schaefer & Chafin

Kovtun, Moore & RomatschkeIn analogy to “stickiness of sound” 29

• Consider the time-dependent correlation function 
of the momentum density

⟨πT
i (0, ⃗k) πT

j (0, − ⃗k)⟩ ≡ Cij(t, ⃗k),

Cij(t, ⃗k) = (δij − ̂ki
̂kj) Cπ(t, k)

Cπ(t, k) = ρ T exp (−
η
ρ

k2 t)
here

• In linearised hydro:

C.C., J. Ott, T. Schaefer, V. Skokov PRL 133 
(2024) 032301



Extraction of dynamic critical exponent
• Compute time dependent correlator 

of the order parameter

C(t, ⃗k) = ⟨ϕ(0, ⃗k) ϕ(t, − ⃗k)⟩

at the critical point.

• Dynamic scaling at critical point : 

C(t, k) = C̃ (t/Lz, k L)
• Hold  fixed, vary lattice size. Extract  

by looking for data collapse.
kL z z (η = 0.01) = 3.01

Model H0

k = 4π/L

30

• a wave-number dependent 
relaxation rate is defined:

C(t, ⃗k) ∼ exp(−Γk t)



Variation of z with η

Γk =
Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

• In Model H0,  can become 
quite small. 

•  Dynamic exponent crosses 
over from  (pure diffusion) 

to  (Model H expectation)

ηR

z = 4
z = 3

• Extract  for various z η

The Kawasaki 
approximation:

10�2 10�1 100 101

3.0

3.3

3.6

3.9

4.2

⌘
z e

↵

model H0
Kawasaki approximation

31



Summary & Outlook
• Performed numerical simulations of stochastic fluid dynamics near a critical point. Observed 

renormalization of shear viscosity and dynamical scaling. 

• Dynamic scaling exponent depends sensitively on value of correlation length 
and effective shear viscosity.

• Self-coupling of momentum density is important in limiting the smallness of 
effective viscosity.

• Pure Model H behavior  requires both large  and small  .z ≈ 3 ξ ηR

To generalize this to relativistic fluids with non-trivial expansions and cooling, inclusion of 
sound modes and critical equation of state.

Thank you!
32
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The Maximum-Entropy framework 
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• To re-construct  solely using quantities appearing in , i.e., δf Tμν (e, uμ, πμν, Π)

• What is the most probable distribution? Let there be several micro states  with 
probabilities . The Shannon entropy is given by

i
Pi

S = − ∑
i

Pi log(Pi)

For the kinetic distribution function f(x,p) the non-equilibrium entropy density is given by

s = − ∫ dP (u ⋅ p) (f log f − f)
Holds for Boltzmann particles. Can be generalized for Fermi-Dirac or Bose particles

De Groot, van Leeuwen, van Weert, 
Relativistic Kinetic theory



Model B in mean-field approximation

∂Nk

∂t
= − 2Γk(Nk − Neq

k )

Neq
k =

T
k2 + m2

Γk = Γ k2(k2 + m2)

• In the free-energy functional set λ = 0

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]
• Evolution of  becomes linear. The equal-time correlator  satisfiesϕ Nk(t) = ⟨ϕ(t, ⃗k) ϕ(t, − ⃗k)⟩

Equilibrium correlator and relaxation-rate 

• Near , mean-field predicts  with a dynamic exponent . m2 = 0 Γk ∼ kz z = 4

• Later: interactions, coupling of  to hydro modes lead to modifications from .  ϕ z = 4
9



Model B: the non-linear case

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]
• Interactions renormalize . For chosen 

values of  it is possible to tune  
to hit the critical point.

m2

(T, λ) m2

• To determine  for an infinite system from finite volume calculations. Quantities like 

,  show peaks whose location depends on L.

m2
c

⟨M2⟩ ⟨M4⟩

• At the true critical point, leading order finite 
volume effects on the Binder cumulant  cancelU

U ≡ 1 −
⟨M4⟩

3(⟨M2⟩)2

• Model B configs have long thermalization time  with .τR ∼ Lz z ≈ 4

• Determine  using Model A (purely relaxational dynamics), lies in same static universality 

class, easier to thermalize .

m2
c

τR ∼ L2
T. Schaefer and V. Skokov PRD 014006 (2022) 10
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Metropolis step for Model B
• Choose a trial update at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ) + q2
μ

qμ = 2 Γ T Δt ξμ

ΔF(x) = (d +
m2

2 ) (ϕ2
trial(x) − ϕ2(x)) +

λ
4 (ϕ4

trial(x) − ϕ4(x))

−(ϕtrial(x) − ϕ(x))
d

∑̂
μ=1

(ϕ(x + ̂μ) − ϕ(x − ̂μ))
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Metropolis step for Model B
• Choose a trial update at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ)+q2
μ

qμ = 2 Γ T Δt ξμ
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Metropolis step for Model B
• Choose trial updates at  and  ⃗x ⃗x + ̂μ

ϕtrial(t + Δt, ⃗x) = ϕ(t, ⃗x) − qμ, ϕtrial(t + Δt, ⃗x + ̂μ) = ϕ(t, ⃗x + ̂μ) + qμ

qμ = 2 Γ T Δt ξμ

• The change in free energy ΔF( ⃗x, ⃗x + ̂μ) = ΔF( ⃗x)+ΔF( ⃗x + ̂μ)+q2
μ

• Accept with probability P = min(1, exp(−ΔF/T))
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Model H (deterministic part)

∂ϕ
∂t

+
⃗πT

ρ
⋅ ⃗∇ ϕ = 0,

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT = ⃗∇ ϕ ⃗∇2ϕ

• Let’s consider only the non-dissipative part of the equations

The third-order term is necessary for 
conserving energy 

dH
dt

= ∫ d3x [ · ⃗πT ⋅
⃗πT

ρ
− ·ϕ∇2ϕ + V′￼(ϕ) ·ϕ] = 0

Third-order term, goes 
beyond usual Navier-
Stokes

where the equations of motion have been used along with standard continuum manipulations

∫x
V′￼(ϕ)

⃗πT

ρ
⋅ ∇ϕ = ∫x

⃗∇ ⋅ ( ⃗πT

ρ
V(ϕ)) = 0

πT
i

ρ ( πT
i

ρ
∇j) πT

i = ∇i( πT
i

ρ
π2

T

2ρ )
• These continuum manipulations are not necessarily allowed in the discretized theory.



Model H numerics (deterministic part)

·ϕ = −
1
ρ

πμ
T ∇c

μϕ, ·πμ
T = − ∇μ( 1

ρ
πT

μ πT
ν )

skew

+ (∇c
μϕ) (∇c

ν ∇c
νϕ)

·ϕ = ⃗∇ ⋅ ( ⃗πT

ρ
ϕ) ·πT

i = − PT
ij ∇k( 1

ρ
πk

Tπ j
T + ∇k ∇jϕ)• The equations in manifestly 

conserving form

• Use a skew symmetric derivative for the non-linear term

∇μ( 1
ρ

πT
μ πT

ν )
skew

≡
1
2

∇μ( 1
ρ

πT
μ πT

ν ) +
1
2

πT
μ

ρ
∇μπT

ν

along with a centred difference ∇c
μψ = (ψ(x + ̂μ) − ψ(x − ̂μ)/2

• The discretized evolution equations:

Morinishi, Lund, Vasilyev, Moin, 
Journal of computational physics 
(143, 90 (1998)

21
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Model H numerics (deterministic part)

·ϕ = −
1
ρ

πμ
T ∇c

μϕ

dT
dt

=
d
dt ∫ d3x [ π2

T

2ρ
+

(∇ϕ)2

2 ] = 0 conserves the kinetic energy of the 
system exactly:

• The equations are integrated in time using a Runge-Kutta scheme. After each step, 
project onto transverse part in Fourier space

• Total energy conservation in the deterministic step is found to hold to very good accuracy.

·πμ
T = − ∇μ( 1

ρ
πT

μ πT
ν )

skew

+ (∇c
μϕ) (∇c

ν ∇c
νϕ)

• The discretized eqs.

πT
μ = PT

μν πν PT
μν = δμν +

k̃μ k̃ν

k̃2
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Results: Dynamics of momentum density

⟨πT
i (0, ⃗k) πT

j (0, − ⃗k)⟩ ≡ Cij(t, ⃗k), Cij(t, ⃗k) = (δij − ̂ki
̂kj) Cπ(t, k)

Cπ(t, k) = ρ T exp (−
η
ρ

k2 t)

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

t

1 k
2
d dt
ln
(C

⇡
(t
,k
))

⌘ = 0.01
⌘ = 0.05

• Consider the time-dependent correlation function of the momentum density

where

• In linearized hydrodynamics

• Thermal fluctuations and non-
linear effects modify linear hydro 
result (even away from )Tc

• Compute  in Model H to 

extract effective 

Cπ(t, k)
η



Dynamics: Loop corrections
Non-linear interactions between modes  can be represented diagrammatically ⃗πT, ϕ

Green’s functions for πT

Green’s functions for  ϕ

Self-advection of πT Coupling of 
 to πT ϕ

Corrections to momentum corr. function Corrections to corr. function of ϕ

Advection of  by ϕ πT

26
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Dynamics: Order parameter
• Using the time dependent correlation function of the order parameter

C(t, ⃗k) = ⟨ϕ(0, ⃗k) ϕ(t, − ⃗k)⟩

a wave-number dependent relaxation rate is defined C(t, ⃗k) ∼ exp(−Γk t)

• A model for  was proposed by Kawasaki:Γk

Γk =
Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

Pure Model B prediction 
using mean field approx.

Arises from coupling 
between  and  ϕ πT

Kawasaki function

Diagrams computed with 
certain approximations 



Dynamics: Kawasaki approximation
• The Kawasaki approximation: Γk =

Γ
ξ4 (kξ)2 (1 + (kξ)2) +

T
6πηRξ3

K(kξ)

• Near critical point, relaxation-rate for wavenumbers  should cross over 
from  (pure diffusive dynamics) to  (pure Model H behavior).

k = k* ∼ 1/ξ
z = 4 z = 3

• Digression: Using  one can re-recompute the 

renormalization of  due to coupling of  to :

Γk
η πT ϕ

ηR = η [1 +
8

15π2
log ( ξ

ξ0 )] Near critical point, viscosity diverges, but only weakly

ηR ∼ ξxη with xη ≈ 0.05
32



Cross-over of z

• In full Model H,  cannot become 

too small  min( ) 

ηR
⟹ z ≈ 3.3

10�2 10�1 100 101

3.0

3.3

3.6

3.9

4.2

⌘R
z e

↵

model H0
model H• Dynamic scaling exponent as a 

function of renormalized viscosity.

•   for full Model H coincides 
with Model H0 
z

∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⋯
∂ ⃗πT

∂t
+

⃗πT

ρ
⋅ ⃗∇ ⃗πT =

η
ρ

∇2 ⃗πT + ⋯Model H Model H0
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Evolution of higher moments

• Consider higher-point 
correlations 

• Correlation functions satisfy 
dynamical scaling 

• Relaxation rate depends on ’n’. 
Not compatible with mean field 
expectations 

Gn(t) = ⟨Mn(t)Mn(0)⟩

M(t) = ∫V
d3x ϕ(t, ⃗x)



Backup: determination of  in Model Am2
c

• At a critical point, susceptibilities  diverge (infinite vol). In finite volume there are peaks. 

Possible strategy: Thermalize Model B configurations, compute  at different  and look for 
peaks.  

• Mean-field estimates that Model B configurations take  with z ~ 4 to thermalize. 
Computationally demanding. 

• Use a model in the same static universality class but with smaller   Model A, relaxational 
dynamics of an order-parameter (z = 2).

⟨M2⟩
⟨M2⟩ m2

τtherm ∼ Lz

z ⟹

∂ϕ
∂t

= − Γ
δF
δϕ

+ ζ

⟨ζ(t, ⃗x) ζ(t′￼, ⃗x′￼)⟩ = 2Γ T δ( ⃗x − ⃗x′￼) δ(t − t′￼)

F[ϕ] = ∫ d3x [ 1
2 (∇ϕ)2 +

1
2

m2 ϕ2 +
λ
4

ϕ4]



Backup: The stickiness of sound

Linearized energy-momentum tensor in presence of noise

T00,ξ = δe T0i,ξ = − (e0 + P0) δui Tij,ξ = δij c2
s δe − η (∂iδuj + ∂jδui −

2
3

δij
⃗∇ ⋅ δ ⃗u) + ξij

Noise is Gaussian: ⟨ξij(x)ξkl(y)⟩ = 4 η TΔijkl δ4(x − y)

Averages of any quantity is obtained by using a functional integral ⟨𝒪⟩ ≡ ∫ Dξij e−Sξ 𝒪

Sξ = ∫ d3x ξij ( 1
8Tη

Δijkl) ξkl

Can compute any correlation functions, for eg., ⟨T12(x) T12(y) ⟩ ≡ G12,12(x, y)

Kovtun, Moore & Romatschke



Backup: The stickiness of sound
Beyond linearized regime, consider terms up to 2nd order in perturbation (also take low 
momentum limit) T12

ξ = (e0 + P0) δu1 δu2 + ξ12

The symmetric correlator 

In Fourier space, 

For example,  G01,01
sym = −

2T
ω (e0 +

k2η
iω − γη k2 ) γη = η/(e0 + P0)

Finally, one obtains

Renormalization of shear Kovtun, Moore & Romatschke


