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Outline

. Part I: Out-of-equilibirum dynamics in early stages of heavy-ion collisions

Competition between interactions that try to establish local thermal equilibrium ana
rapid expansion of the medium which forbids it.

. Part II: Out-of-equilibirum dynamics near a critical point

Fven if a dynamic system is in local thermal equilibrium, it will fall out of
equilibrium as a critical point is approached (critical slowing down).

. |In both these cases, suitable extensions of hydrodynamic-like theories
may be useful to model the dynamics.




The ‘standard model’ of heavy-ion collisions
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Mazeliauskas & Berges, Heller et al, Romatschke, Schenke
et al, Kurkela and Wiedemann

For hydrodynamics to apply,
system must be close to
local thermal equilibrium

Keegan et al, JHEP (2016)

7~ 0fm/c 7~ 1fm/c (Typical starting time for hydro)

The system formed is initially far from local thermal equilibrium; characterized by large
spatial gradients

Key question: Is the system weakly coupled or strongly coupled?

T weakly-coupled, can be described in terms of quasi-particles using kinetic theory.  (This talk)

't strongly coupled, quasi-particle description does not hold; approaches such as holography

needed. J = 4 super Yang-Mills theory used. Chester, Yaffe, Heller, Janik, van Der Schee, and others



Kinetic theory

Models microscopic behavior of constituents; collisions/scattering. No assumption of local
thermal equilibrium. Thus, applicable both near and far from local equilibrium.

Assumption: mean-free path and relaxation timescales long compared to interaction timescales.

Fvolution of (¢, X, p) governed by Boltzmann equation:
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- A useful model for early-time dynamics in HIC: Bjorken flow

o= =0, 1% = z/t Simplified stresses, T"* = diag(e, Py, Py, P;)



Kinetic theory

-  Models microscopic behavior of constituents; collisions/scattering. Unlike hydro, does not
assume local thermal equilibrium. Applicable both near and far from local equilibrium.

Assumption: mean-free path and relaxation timescales long compared to interaction timescales.

. Evolution of (¢, X, p) governed by Boltzmann equation: p#d,f = E[f]

» QCD kinetic theory in Bjorken flow Almaalol et al PRL (2020)
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Kinetic theory: Toy model

Many features of early stages can be captured in a toy model (relaxation-time approximation)
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Kinetic theory using moments siizotand van, pLs (2018)

Too much information in the full distribution function. Focus on particular moments of f(z, p)

Z,(1) = J p* Py, (cos 0) f(z, p)
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[srael-Stewart hydro and moments

- The moments equations contains Israel-
Stewart like "hyaro” (ISH) (truncate atn=1)

dZ
dt

. |SH are extensively used in heavy-ion simulations.

« |SH captures guc
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The Maximum-Entropy framework

C.C., Heinz, Schaefer, PRC 108 (2023), 034907

How to formulate a (3+1)-d far-from-equilibrium macroscopic theory? Transverse
gradients will also initiate flow. Fixed points not known apriori, should work irrespective of

symmetries of flow.
. To evolve components of T** = eu* u* — (P + I1) A" + #t*

e=—(e+ P+1]) Vﬂu” + 7 V(ﬂbt,,) (energy density evolution)

(e+ P+1)u" = VFP 4+ -+ (velocity evolution)

° ﬂﬂy
7[</4V> + T_ —) n V(//t ul/> — g ahv Vﬂuﬂ... — 210{4_1/;),5 Vauﬂ (SheQr GVO\utiOﬂ)
R
Denicol, Niemi, Molnar, Rischke PRD (2012), Similar eq. for bulk pressure

Jaiswal, Bhalerao, Pal (2014)

Need an evolution equation forp(”‘_”g)ﬁ. This leads to an infinite tower of coupled equations.

Requires truncation, i.e., to construct f(x, p) using knowledge of T#*.



The maximume-entropy distribution
E. Jaynes, Phys. Rev. 106, 620 (1957)

The least biased distribution that uses all of and only the information provided by T# is the
one that maximizes the non-equilibrium entropy

sLfl = — JdP (” ’P) (f log(f) —f) subject to constraints that f(x,p) satisfies,

1
JdP (u-p)” f=e, ‘E[dpp<ﬂ>p<”>f=P+H, Jde<”p”>f= "

Introduce Lagrange multipliers (A, Ay, 7’(//”/>) corresponding to constraints and solve for

e fumetional derivative oslfl 0 C.C., Heinz, Schaefer, PRC 108 (2023), 034907,
5f o Everett, C.C., Heinz, PRC (2021), 064902
| H R y(am _
fvE = €xp [—A (- p) + —— pip'™ — p<“pﬁ>] =
0 p 0 p |
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Features of Max-Entropy distribution

In the fluid rest-frame  fyg = €Xp | —

Plays role similar to

an inverse e ANISOtropic deviation
temperature |SQteri from equilibrium
deviation from
equilibrium See also, “Maximum-
. Positive-definite for all momenta entropy freezeout” by
Pradeep and
. Non-linear dependence on shear and bulk stresses Stephanov, PRL (2023)

+ Reduces to the Chapman-Enskog of in the limit of small viscous stresses.

- Ensuing dynamical framework consistent with the second-law.
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Standard Israel-Stewart hydro

dashed: CE-hydro

solid: RTA Boltzmann -
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Maximum-Entropy framewor
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Summary: Part I (out of equilibrium dynamics in initial stages of HIC)

It the pre-hydrodynamic evolution admits a kinetic theory description, Israel-Stewart like
“hydro” frameworks may capture certain aspects of the macroscopic dynamics even
far-from-equilibrium.

- The framework of maximum-entropy may serve as a proxy for kinetic theory as far as

describing evolution of (T, J#) is concerned. Need for (3+1)-d simulations to test this
expectation.
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Part II: Out-of-equilibrium dynamics near a critical point

15



Out-of-equilibrium dvnamics near critical point
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Long-term godal of BES: Identify signatures of a
possible critical end point of QCD using heavy-

lon Collislons. 1qks by B. Mohanty, A. Pandav

Near a critical point, fluctuations become
dominant. But fluctuations not equilibrated as
fireball is rapidly expanding.

Talk by M. Pradeep

Need for a dynamical theory of critical
fluctuations.

Fluid dynamics should still be applicable, but
with appropriate modifications:

. Inclusion of thermal fluctuations, slow
dynamics of order parameter, and
criticality in equation of state.

C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019) Talk by J. Goswami
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Dynamics of critical fluctuations are

universal.

Hence, study QCD critical dynamics using

the simp.

est system rom the same dynamic

universa.

Universda

ity class.

lity class depends on

- Order parameter being conserved,/non-
conserved.

- Coup

ling of order parameter to other

slow modes, eg, hydrodynamic modes.

QCD critical point shares the same static
universality class as the 3d Ising Model

17



The basic idea

The properties of a fluid are defined by slow, macroscopic degrees of freedom:

conserved densities, i.e., densities of energy, momentum, or any conserved charge.

If afluid is near a critical point, the dynamics of its order parameter becomes slow

(critical slowing down). Must be included in the hydrodynamic description. Hohenberg &

Halperin

The macroscopic fields fluctuate as they couple to microscopic degrees of freedom.

The theory to be solved is then stochastic hydrodynamics coupled to an order parameter.

Such theories are classified by Ho

dynamics (Model A), ¢

ritical diffus

(Model 5), critical diffu

\

relevant to QCD

nenberg &

ion (Model
sion coupled to Navier-Sto

/ Rajagopal and Wilczek

3), C

Halperin: purely relaxational

ritical anti-ferromagnet

<es (Model H).

Son and Stephanov
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Previous works

. Use framework of non-critical stochastic hydro and include criticality in

transport coefficients.

~OS and

- Deterministic approcaches: The above framework can be used in linearized regime to

write deterministic eqgs for n-point equal time functions: Hydro+, Hydro++, hydro-kinetics.

Stephanoy, Yin, X. An, Akamatsu, Teaney, Mazeliaukas, F. Yan, H. U. Yee, Martinez, Schaefer...

- Extend them to critical regime by replacing susceptibilities and relaxation-rates by

their critical expectations. Numerical studies of one-dimensional expanding systems.

M. Nahrgang et al., G. Pihan et al., M.

-  Not many studies of direct simulatio

Bluhm, L. Du, Heinz and others

n of critical fluid dynamics. A novel ap

simulate stochastic dynamics basec

oroach to

on Metropolis has been recently formr

ulated.

Florio, Grossi, Soloviev, Teaney, Schaefer, Skokov, Basar,

Bhambure, Singh, Newhall et al

19



Stochastic dvnhnamics: deterministic approach

+ Hydro equations are conservation eqgs: g 7% =0, 9,J* = 0 Stephanoy, Yin, X. An, Basar, Akamatsu,
Teaney, Mazeliaukas, F. Yan, H. U. Yee,

0, = —V - Flux|y] Martinez, Schaefer...

Stochastic variables @ = (Y:Oi, J O) are local operators coarse-grained (over cellsb: (| < b <K L))

oy=—-V- (FIUX[V/] T Noise) Landau-Lifshitz
- Now, variables are one-point and two-point functions:
w=®) and G=<4i>—-<y><y> (Equaltime correlation)

Due to non-linearities fluxes depend on G

0, = — V - Flux|y, G] (Conservation) 0,G = L|G;y] (Relaxation)

. Typically, the slowest hydro mode is included G = (om(x,) om(x,)) where m = s/n . Approach

used in expanding systems  akamatsu et al, Rajagopal, Ridgway, Weller, Yin, M. Nahrgang et al., G.
Pihan et al. , M. Bluhm, L. Du, Heinz and others

20



Stochastic dvhamics: numerical approach

- First: critical diffusion of a conserved order parameter (Model B)

-  Simulation of diffusive dynamics using a Metropolis algorithm

- Dynamic scaling in Model B

. Second: Coupling of the conserved order parameter to hydrodynamic modes (Model H)
-  Modification to dynamic scaling behavior compared to Model B

. Effective shear viscosity of the fluid

21



Model B

Consider the Ising model. Coarse grain the spin (microscopic) degrees of freedom to obtain an

order parameter @(x) (magnetization density).

- The statics of the system near the critical point (small ¢) is governed by an effective free-
energy functional (Ginzburg-Landau)

6 | | |

F[¢]=Jd3x [%(V¢)2+lm2¢2+%¢4] 4:

2

Dynamics: If the order parameter is conserved, its evolution may be
modeled as
O

— +V. f =0, the current
ot

| | Diffusion Noise
Noise ensures fluctuation-

dissipation (E,X)EW, X)) = 2T T8 8(t — 1) 3% — X)



- Compute the change in free energy due to

Metropolis step

. Choose trial updates at x and x + fi  (conserves ¢)

PUNt + ALX) = Pp(1,X) — q,, QT+ ALY+ ) = (L, X+ ) + g,

q, = \/ZFTAtfﬂ

these updates

1 A

| o3 l 200t 2,0 Moy
F[¢]—de[2(v¢)+2m¢+4¢

. Accept with probability P = min(1, exp(—AF/T))

23




The Metropolis scheme

- The Metropolis update reproduces the flux on average, and also its variance

~ — OF ,
(g) = — AtI'’V — + O(Ar”)
o

(G%) =2 T At + O(At?)

- Probability of a new configuration,

P (¢, %) = ¢™"(t,X)) ~ exp |- (F[¢""] — Fl])|

irrespective of order of updates.

. The equilibrium distribution exp(—F[¢]/T) is sampled even if At is not small.

. If Atisnot small, the diffusion eq. is approximately realized.

24



Results: Dynamic scaling

- Scaling Hypothesis: Near a critical point

1.00
—L =28
o — L =12
~0.75F —L =16
= L=
=
N
1 0.90
e
\Q_'J/ 0.25
0.00 t . | ——
0.0000 0.0025 0.0050 0.0075 0.0100

t/L°

Data collapse occurs for z &~ 3.97. Theoretical
expectationz =4 —n,n =~ 0.03

. Zis the dynamic scaling exponent

C.C., J. Ott, T. Schaefer, V. Skokov (PRD 108
(2023) 074004)

the dynamic correlator, (¢ (0, k) ¢(t, — k))

G(t, k) = G(t/E, k&)

(7 is a universal function.

. At the critical point & ~ L, thus G(¢, k)

obtained in different volumes should
collapse

~f I
G(t,k=2n/L) - G (—,27:)
) 5

if time is scaled by L*



Critical dynamics in Model H

. Couple the order parameter ¢ to a fluid’s momentum density 7

%=FV25—H— (ng- 5H>+§

57TT

diffusion advection  noise

- Stochastic evolution equation of the momentum density

on , OH — oH oH —\_. -
=nV'— +<V¢)-—— -V | np+ ¢
ot 57TT

diffusion Stress advection
energy of ¢
- L7 = N2, A,
+ The Hamiltoniaon H = |d°x —+—(ng) + —m P+ — @
20 2 2 4
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Coupling to a fluid (Model H)

. Couple the order parameter to a fluid’s momentum density 7

% _ FV25—H _(ve- oH e ’ Assumptions:

- Non-relativistic fluid

. Evolution equation of the momentum density
- The momentum density is

aﬂT=;7V25fI+<7¢).5_H_ 5{?? o4 E ﬁ transverse V - 7 =0
| There are shear waves but
+  The Hamiltonian . no sound. No coupling to

energy density or pressure.

27



Model H simulations

- Evolution consists of both stochastic/dissipative and conservative parts.

. Use Metropolis for the stochastic/dissipative update.  C.C., J. Ott, T. Schaefer, V. Skokoy,
arxXiv:2411.15994

Order parameter field in 30

Order parameter + velocity field in 2d

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Simulations by Josh Ott

28



- Consider the time-dependent correlation function 2094) 032301
of the momentum density
- — — - o - bh
<7TiT(O,k) JZJ-T(O, —k)) = Cl-j(t, k), 10°§— N . . oS -
- &
B B & o &
here Cy(t, k) = (5ij _ kikj) C.(1, k) | :
1071 =
: O
&g - O
- Inlinearised hydro: C (1,k) = p T exp (_Ekz t) S o m = :
Lo . ’ 1072 ¢ O opure diffusion
The “stickiness of shear : . Aself advection -
B model HO ‘
o = 1 + 7 PTA  schaefer & Chafin 10_3;'[9 - émodelH
. 6072 1 103 102 10! 10°
U
Thermal fluctuations + Non-linearity of hydro
S . 0T B — L .
—> shear viscosity has a minimum atT T Yz, = EV%T+ VpVih + E
P P

Self-advection dominates

Effective viscosity

C.C., J. Ott, T. Schaefer, V. Skokov PRL 133

IN analogy to “stickiness of sound” Kovtun, Moore & Romatschke
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Extraction of dynamic critical exponent

- Compute time dependent correlator

of the order parameter

C(1, k) = (p(0, k) p(t, — k))

at the critical point.

- 0 wave-number dependent

relaxation rate is defined:

C(t, k) ~ exp(=T, ©)

-  Dynamic scaling at critical point :

C(t,k) = C (t/L% kL)

old kL fixed, vary lattice size. Extract z
oy looking for data collapse.

1.00}

0.75

= 050}

O

0.25

0.00 |

= = 48, o = (48/40)301
=] = 48, o = (48/40)*
L =40,a=1

o — 0.01

Model HO

k =4x/L

100 200 300 400 500
ot

z(n = 0.01) = 3.01
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Variation of z with #

Extract z for various i

- In Model HO, p can become

quite small.

Dynamic exponent Crosses
over from z = 4 (pure diffusion)

to z = 3 (Model H expectation)

12 © moddl HO :
1 Kawasaki approximation s
T A T
7
The Kawasaki = — (kg)* (1 + (k&) +—— K(kE)
approximation: 3 67nRs
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Summary & Outlook

Performed numerical simulations of stochastic fluid dynamics near a critical point. Observead
renormalization of shear viscosity and dynamical scaling.

. Self-coupling of momentum density is important in limiting the smallness of
effective viscosity.

- Dynamic scaling exponent depends sensitively on value of correlation length
and effective shear viscosity.

. Pure Model H behavior z & 3 requires both large £ and small #p .

To generalize this to relativistic fluids with non-trivial expansions and cooling, inclusion of
sound modes and critical equation of state.

Thank you!
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The Maximum-Entropy framework

. To re-construct of solely using quantities appearing in T#*, ie., (e, u”, n***, I1)

. Whatis the most probable distribution? Let there be several micro states 1 with

probabilities P;. The Shannon entropy is given by
S:_ZPiIOg(Pi)
l

For the kinetic distribution function (x,p) the non-equilibrium entropy density is given by

De Groot, van Leeuwen, van Weert,
S =T [dP (M ']?) <f lng_f) Relativistic Kinetic theory

Holds for Boltzmann particles. Can be generalized for Fermi-Dirac or Bose particles



Model B in mean-field approximation

- In the free-energy functional set A = 0

. Nearm

| 3 l 2 l 2 42 £4
F[¢]—de[2(v¢)+2m¢+4¢]

. Evolution of ¢ becomes linear. The equal-time correlator N, (1) = (¢ (¢, 1?) O(t, — lz)) satisfies

ON,
ot

I

Equilibrium correlator N, = and relaxation-rate T, = T k*(k* + m*)
k? + m?

2 = (0, mean-field predicts [, ~ k*with a dynamic exponent z = 4.

- Later: interactions, coupling of ¢ to hydro modes lead to modifications from z = 4.



Model B: the non-linear case

. |nteractions renormalize mz. For chosen

1 2 A
values of (T, 1) it is possible to tune m* Flgl = J‘Px [5 (Vo) 5 m - 1 #*
to hit the critical point.

. To determine m? for an infinite system from finite volume calculations. Quantities like

(M?), {M*) show peaks whose location depends on L.

. At the true critical point, leading order finite O (M*)

volume effects on the Binder cumulant U cancel 3((M?))?

. Model B configs have long thermalization time 7, ~ L*with z & 4.

2

- using Model A (purely relaxational dynamics), lies in same static universality

. Determine m

. - 2
class, easier to thermalize 7z ~ L. T schaefer and V. Skokov PRD 014006 (2022)



Metropolis step for Model B

. Choose a trial update at x and X + /i

P+ ALT) = p(,X) — q,, U+ ALT + ) = P(LX+ ) + g,

q, = \/ZFTAtcfﬂ

+ The changein free energy AF(X,X + 1) = AFX)+AF(X + i) + q/%

2 A
AF(x) = (d | ’7; ) <¢t%ial(x) — ¢2(x)) + Z <¢éial(x) — ¢4(X))

d
~(Puia®) — p)) ) (Pl + @) — plx — )

=1

12



Metropolis step for Model B

. Choose a trial update at x and X + /i

PUNt + ALX) = (6, %) — g, PN+ AL+ ) = LT+ ) + q,

q, = \/ZFTAtfﬂ

. The change in free energy AF(X,X + i) = AF(X)+AF(X + /2)+q,f

13



Metropolis step for Model B

. Choose trial updates at X and X + /I

PN+ ALX) = o, %) — q,,  PUUCHALX+ Q) = Pp(LX+ ) + g,

q, = \/ZFTAtfﬂ

. The change in free energy AF(X,X + i) = AF(X)+AF(X + /2)+q,f

. Accept with probability P = min(1, exp(—AF/T))

14



Model H (deterministic part)

Let’s consider only the non-dissipative part of the equations

. . . Third-order term, goes
a¢ ﬂ'T — aﬂ'T T = = ;< .
— +—-V¢ =0, + = . Vi, = V¢ V?p <= beyondusual Navier-
o p a p Stokes

—

The thirgl—order term is necessary for d_H _ J 3, [7—[} T V2 + V() ¢] — 0
conserving energy dt I,

where the equations of motion have been used along with standard continuum manipulations

- - T T T 2
J V’(¢)EV¢=J'V<EV(¢)>=O ﬂ_i(ﬂ_ivj>ﬂiT=vi(7Ti ﬂT)
x P X p p\ P p 2p

- These continuum manipulations are not necessarily allowed in the discretized theory.
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Model H numerics (deterministic part)

. The equations in manifestly b = V. (ﬁ ¢) ]Z'ZT = — Pi]T Vk<l ﬂ%ﬂ]T + Vkvj¢>

conserving form 0 P
Use a skew symmetric derivative for the non-linear term Morinishi, Lund, Vasilvev, Moin,
1 1 1 1zl Journal of computational physics
V,u <_7T/4T7T1/T> = _V,M (— IMTJZ'VT> | . VﬂﬂUT (143, 90 (1998)
skew

along with a centred difference V) w = (w(x + 1) — w(x — f1)/2

- The discretized evolution equations:

: 1
b= Vi, = — vﬂ(—n,{nf) +(V;¢) (ViVig)

skew

21



Model H numerics (deterministic part)

- The discretized egs.

gﬁ=—%ﬂgvz¢ 7%’}=— Vﬂ<— MTﬂUT) +(V;¢)(V,€V,€¢)

skew

dt 20 2

2
conserves the kinetic energy of the ¢/ _ d J' By | T (Vo)’ — 0
system exactly: dt dt

The equations are integrated in time using a Runge-Kutta scheme. After each step,
project onto transverse part in Fourler space

T _ s
nlszPﬂTyﬂy P =0, +—

- Total energy conservation in the deterministic step is found to hold to very good accuracy.
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Results: Dynamics of momentum density

(z1(0,6) 21 (0, — b)) = Cy(t,k), where  Cy(t, k) = <5l-j — l%-l%-) C,(t, k)

In linearized hydrodynamics C,(t,k) = p T exp (

. Compute C_(¢, k) in Model H to

extract effective i

. Thermal fluct
inear effects

result (even away

Jations anad

Mod

ity linear

rom 1)

0.0

—Ekzt

- Consider the time-dependent correlation function of the momentum density

60

100
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Dynamics: .Loop corrections

Non-linear interactions between modes J?T, @ can be represented diagrammatically

Green’s functions for V1 VAVIVAVV VoV VAV VAVAV,VoV VoV

Green'’s functions for ¢

Corrections to momentum corr. function Corrections to corr. function of ¢
Self-advection of 7 Coupling of

Advection of @ by &
7,10 ¢ ¢ by 7y
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Dynamics: Order parameter

- Using the time dependent correlation function of the order parameter
C@t, k) = (p(0,k) p(t, — k))

a wave-number dependent relaxation rate is defined  C(t, 1?) ~ exp(—=171)

. A model for I, was proposed by Kawasaki:

- Kawasaki function

I
&

(k§)2(1+(kéj)2) | : K(k&)

67nRe

Arises from coupling

Pure Model B prediction
using mean field approx.

Diagrams computed with
certain approximations

between ¢ and &,
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Dvnamics: Kawasaki approximation

. . [ T
+ The Kawasaki approximation: T, = g (k§)2 (1 n (k(f)z) : e K(kE)

. Near critical point, relaxation-rate for wavenumbers k = k. ~ 1/& should cross over
from z = 4 (pure diffusive dynamics) to z = 3 (pure Model H behavior).

. Digression: Using I, one can re-recompute the

renormalization of 7 due to coupling of ;- to ¢:

8 S
— 14 | - - . . . .
TR =1 [ 1572 02 (5())] Near critical point, viscosity diverges, but only weakly

g ~ & withx, &~ 0.05
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Wi

In full Model H, R cannot become

Cross-over of 7

Dynamic scaling exponent as d
function of renormalized viscosity.

for full Model H coincides

ith Model HO

too small = min(z) ~ 3.3

- @model HO

4.2
¢ model H

3.9
= 3.0
N

3.3

3.0 §$ 9

102 10~1
Model HO
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Evolution of higher moments

I

Consider higher-point

. 1.00 - — 05 an =I 1
correlations Mo = 0. soon =2
—_ n n . _
G, (1) = (M"()M"(0)) _om
-
=
3 - 2 0.50( _
M(t) = | d’x¢(t,x) s
1% &
Correlation functions satisty 0.25} .
dynamical scaling
0.00 | ]
Relaxation rate depends on n' 0.00 0.0 0.10 0.15 0.20 0.25

Not compatible with mean field t/L?

expectations



Backup: determination of 7~ in Model A

. At a critical point, susceptibilities (M 2) diverge (infinite vol). In finite volume there are peaks.

Possible strategy: Thermalize Model B configurations, compute (M?) at different m? and look for
peaks.

. Mean-field estimates that Model B configurations take 7., ~ L with z ~ 4 to thermalize.
Computationally demanding.

- Use amodel in the same static universality class but with smaller z = Model A, relaxational
dynamics of an order-parameter (z = 2).

o S5F

1 2
T — — | 53 | = o2 20 g4
py » + ¢ Fl¢] de [2 (v¢) +—m?¢ ¢

(%) EW, X)) = 2T TS — ¥) 8(t — 1)



Backup: The stickiness of sound

Kovtun, Moore & Romatschke
Linearized energy-momentum tensor in presence of noise

2 -
Ty e = 0€ lyie = — (eo + PO) OU, T = 5.c2de — 1 (0i5uj + 9;6u; — 551-]- V . 5u> + &

s

Noise is Gaussian: <5lj(x)ﬁsz(Y)> = 4n TAy 5% (x — y)

Averages of any quantity is obtained by using a functional integral  (0) = JDflje_Sé O

1 ;
Q. — d3 B Al]kl
¢ [ xfl] (STi’] ) 5kl

Can compute any correlation functions, foreg., (T'*(x) T**(y) ) = G'*'*(x,y)




moment

Beyond |i

U

ned

Backup: The stickiness of sound

rized regime, consider terms up to 2nd order in perturbation (also take low

M i

M 712 = (e + Py) bu' su® + £

The symmetric correlator  GE2a?(z,y) = (€*3(x)€'2)(y))e +(e0+Po) 2 (0u' () 0u? (z)du' (y)du? (y))e

In Fourier space, Gl (w, k — 0) = 2Ty +/

dw' d* 'K’ [GOLO!
o (2m)d—1 fym
+G01’O2 (w/, k/)GO2,01 (w . w/, —k’)]

sym sym

(wl’ kI)G02,02 ((JJ . w/, _kl)

sym

sym

2T k*
For example, G = (e() 7 ) v, = nl(ey+ Py
w iw — ¥, k?
7+ (32 T
Finally, one obtains  G**'2(w,k = 0) = —iw [ n 4 LT Auy +(1+7;)w3/2( (2) )
12072+, 9 407T72/ 2

Renormalization of shear Kovtun, Moore & Romatschke



