Overview of neutron stars and their connection to QCD phase diagram

Rana Nandi

DELHI NCR

Introduction

Introduction to Neutron Stars

Neutron stars are dead stars, produced via the gravitational collapse of massive stars $(8M_{\odot} < M < 25M_{\odot})$ via supernova.

Basic features

- Mass (M) ~ $1-2M_{\odot}$
- Radius (R) ~ 10 15 km; $R_{\rm Earth}$ ~ 6000 km, $R_{\rm Sun}$ ~ 7 × 10⁵ km
- Density (ρ) ~ 10¹⁵ g cm⁻³.
 - All of humanity could be squashed down to a sugar cubesized piece of a neutron star.
- Rotates very fast, Period ~ 1 ms -10 s
 - \Rightarrow as fast as blenders.
- Strongest magnetic fields: B_{surface} ~ 10⁸ 10¹² G;

$$\begin{split} & \mathsf{B}_{\mathsf{Earth}} \sim 0.5 \text{ G. Strongest magnet produced on earth B=} 1.2 \times 10^7 \text{ G.} \\ & \Rightarrow \mathsf{Magnetars} \text{ have even higher magnetic fields:} \\ & \mathsf{B}_{\mathsf{surface}} \sim 10^{13} - 10^{15} \text{ G.} \end{split}$$

Unique laboratories for studying matter under extreme conditions.

Discovery

- Neutron stars are mostly observed as radio pulsars.
- Jocelyn Bell and Anthony Hewish (Nobel prize, 1974) discovered the first radio pulsar in 1967.
- Soon identified as a highly-magnetized rotating neutron star.

• More than 3300 pulsars are discovered so far.

Observation

Fermi (<mark>y- ray</mark>)

Hubble (UV, NIR, Visible)

GMRT (radio)

VLT (optical)

GW: A new window

- On August 2017, LIGO-Virgo collaboration detected first ever GW from a binary neutron star merger event: GW170817.
- Subsequent electromagnetic counterparts were detected by ~70 observatories.

Marks the beginning of multi-messenger era of astronomy.

Neutron Star Interior

Schematic picture (Watanabe and Maryuama)

Building a NS

The structure of a static (i.e., non-rotating) star with spherical symmetry in General Relativity is described by the Tolman-Oppenheimer-Volkoff (TOV) eqns (G=c=1):

$$\frac{dp}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2} \left(1 + \frac{P(r)}{c^2\varepsilon(r)}\right) \left(1 + \frac{4\pi r^3 P(r)m(r)}{c^2}\right) \left(1 - \frac{2Gm(r)}{c^2r}\right)^{-1}$$
$$\frac{dm}{dr} = 4\pi r^2\varepsilon(r)$$

P = pressure , $\varepsilon(r)$ = energy density

Boundary Conditions:

$$P(r = 0) = P_c, \quad m(r = 0) = 0$$

 $P(r = R) = 0, \quad m(r = R) = M$

Each EOS corresponds to a maximum mass
 Stiffer EOS gives larger maximum mass and radius

• The EOS of the outer crust is mostly determined using experimentally determined nuclear masses till $\simeq 10^{10}$ g/cc.

Feo et al. Class. Quantum Grav. 34, 034001 (2017)

- The EOS of the outer crust is mostly determined using experimentally determined nuclear masses till $\simeq 10^{10}$ g/cc.
- Up to nuclear saturation density, the modern nuclear theory (like chiral effective field theory) is quite accurate.

- The EOS of the outer crust is mostly determined using experimentally determined nuclear masses till $\simeq 10^{10}$ g/cc.
- Up to nuclear saturation density, the modern nuclear theory (like chiral effective field theory) is quite accurate.
- We have some constraints on the EOS around the saturation density coming from nuclear physics experiments.

Saturation properties of nuclear matter

The energy/nucleon of nuclear matter can be written as:

$$e(\rho, \delta) \simeq e_{\rm snm}(\rho) + e_{\rm sym}(\rho)\delta^2$$

$$e_{\rm snm}(\rho, 0) = \mathbf{B} + \frac{1}{2}\mathbf{K}_0\chi^2 + \frac{1}{6}J_0\chi^3 + \cdots$$

$$e_{\rm sym}(\rho) = \mathbf{J} + \mathbf{L}\chi + \frac{1}{2}K_{\rm sym}\chi^2 + \frac{1}{6}J_{\rm sym}\chi^3 + \cdots$$

$$\delta = \frac{\rho_n - \rho_p}{\rho} \qquad \chi = \frac{\rho_n - \rho_p}{3\rho_0}, \quad \rho_0 = \text{saturation density}$$

Saturation properties of nuclear matter

The energy/nucleon of nuclear matter can be written as:

$$e(\rho, \delta) \simeq e_{\rm snm}(\rho) + e_{\rm sym}(\rho)\delta^2$$

$$e_{\rm snm}(\rho, 0) = \mathbf{B} + \frac{1}{2}\mathbf{K}_0\chi^2 + \frac{1}{6}J_0\chi^3 + \cdots$$

$$e_{\rm sym}(\rho) = \mathbf{J} + \mathbf{L}\chi + \frac{1}{2}K_{\rm sym}\chi^2 + \frac{1}{6}J_{\rm sym}\chi^3 + \cdots$$

<u>Latest experimental/empirical bounds at saturation density (ρ_0)</u> (Oertel et al, Rev. Mod. Phy. 89, 015007 (2017))

- Compressibility : $210 \leq K (MeV) \leq 280$
- Symmetry energy : $28 \leq J (MeV) \leq 35$
- Symmetry energy slope : $30 \leq L (MeV) \leq 87$

- The EOS of the outer crust is mostly determined using experimentally determined nuclear masses till $\simeq 10^{10}$ g/cc.
- Up to nuclear saturation density (ρ_0) , the modern nuclear theory (like chiral effective field theory) is quite accurate.
- We have some constraints on the EOS around the saturation density coming from nuclear physics experiments.
- In the very high-density limit ($\approx 40\rho_0$) perturbative-QCD (pQCD) techniques with quarks and gluon as their degrees of freedom become reliable.

- The EOS of the outer crust is mostly determined using experimentally determined nuclear masses till $\simeq 10^{10}$ g/cc.
- Up to nuclear saturation density (ρ_0) , the modern nuclear theory (like chiral effective field theory) is quite accurate.
- We have some constraints on the EOS around the saturation density coming from nuclear physics experiments.
- In the very high-density limit ($\approx 40\rho_0$) perturbative-QCD (pQCD) techniques with quarks and gluon as their degrees of freedom become reliable.
- This indicates that there is a de-confinement phase transition from hadrons to quarks happening at densities between these two limits.

- The EOS at the intermediate density is very uncertain.
 - \geq Constituents are not known.
 - \geq Interaction between constituents are not fully known.
 - \geq Uncertainties in the many-body description.
- The cores of neutron stars at their heart bears these intermediate densities where phase transition can occur.

• The EOS at the intermediate density is very uncertain.

- \geq Constituents are not known.
- \geq Interaction between constituents are not fully known.
- \geq Uncertainties in the many-body description.
- The cores of neutron stars at their heart bears these intermediate densities where phase transition can occur.

EOS is highly model dependent

Need to rely on astrophysical observations

Constraints from nuclear experiments and astronomy observations with their corresponding sensitive densities.

Tsang, C.Y. et al., Nat Astron 8, 328(2024)

We need precise and simultaneous mass-radius measurements — NICER mission started on 2017.

Tidal deformability

Another significant constraint came from GW170817 with the measurement of tidal deformability (A), an EOSsensitive quantity:

 $\Lambda_{1.4} \leq 800 \quad \text{LVC, PRL 119, 161101 (2017)}$ $\Lambda_{1.4} \leq 580 \quad \text{LVC, PRL 121, 161101 (2018)}$ $\Lambda = \lambda/M^5, \quad \lambda = \frac{2}{3}k_2R^5, \quad k_2 = \text{love number}$

RMF model

Interaction between baryons is described via the exchange of mesons

 \geq The most general form of the interaction Lagrangian density:

$$\begin{aligned} \mathcal{L}_{\text{int}} &= \sum_{B} \bar{\psi}_{B} \left[g_{\sigma} \sigma + g_{\delta} \boldsymbol{\tau} \cdot \boldsymbol{\delta} - \gamma^{\mu} \left(g_{\omega} \omega_{\mu} + \frac{1}{2} g_{\rho} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} + \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right) \right] \psi_{B} \\ &- \frac{\kappa}{3!} (g_{\sigma} \sigma)^{3} - \frac{\lambda}{4!} (g_{\sigma} \sigma)^{4} + \frac{\zeta}{4!} (g_{\omega}^{2} \omega_{\mu} \omega^{\mu})^{2} \\ &+ g_{\sigma} g_{\omega}^{2} \sigma \omega_{\mu} \omega^{\mu} \left(\alpha_{1} + \frac{1}{2} \alpha_{1}' g_{\sigma} \sigma \right) + g_{\sigma} g_{\rho}^{2} \sigma \boldsymbol{\rho}_{\mu} \cdot \boldsymbol{\rho}^{\mu} \left(\alpha_{2} + \frac{1}{2} \alpha_{2}' g_{\sigma} \sigma \right) \\ &+ \frac{1}{2} \alpha_{3}' g_{\omega}^{2} g_{\rho}^{2} \omega_{\mu} \omega^{\mu} \boldsymbol{\rho}_{\mu} \cdot \boldsymbol{\rho}^{\mu} \\ &\sigma, \ \omega_{\mu}, \ \boldsymbol{\rho}_{\mu} \text{ and } \boldsymbol{\delta} \text{ are meson fields.} \end{aligned}$$

For density dependent (DD) models coupling parameters $g_{i=\sigma,\omega,\rho,\delta}$ are density dependent and don't have nonlinear terms.

Saturation properties of nuclear matter

The energy/nucleon of nuclear matter can be written as:

$$E(\rho, \delta) \simeq E_{\rm SNM}(\rho) + E_{\rm sym}(\rho)\delta^{2}, \ \delta = (\rho_{n} - \rho_{p})/\rho$$

$$E_{\rm SNM}(\rho, 0) = B + \frac{1}{2}K\chi^{2} + \mathcal{O}(\chi^{3}), \ \chi = (\rho - \rho_{0})/3\rho_{0}$$

$$E_{\rm Sym}(\rho) = J + L\chi + \frac{1}{2}K_{\rm sym}\chi^{2} + \mathcal{O}(\chi^{3})$$
Latest experimental/empirical bounds at saturation density (ρ_{0})
(Oertel et al, Rev. Mod. Phy. 89, 015007 (2017))
Compressibility : 210 $\leq K (\text{MeV}) \leq 280$
Symmetry energy : 28 $\leq J (\text{MeV}) \leq 35$
Symmetry energy slope : 30 $\leq L (\text{MeV}) \leq 87$

67 out of 269 RMF parameter sets satisfy these bounds R Nandi, P Char and S Pal, PRC 99, 052802(R) (2019)

----- Only 3 EOS (TW99, NLρ and HC) satisfy both the constraints R Nandi, P Char and S Pal, PRC 99, 052802(R) (2019)

 $R_{
m skin}^{208} \lesssim 0.20 \,{
m fm}$ $R_{
m skin} = \langle r_n \rangle - \langle r_p \rangle$ $R_{
m skin}^{208} = 0.33^{+0.16}_{-0.18} \,{
m fm}$ **PREX-I**, PRL108, 112502 (2012)

PREX-II:

 $R_{\rm skin}^{208} = 0.29 \pm 0.07 \,\rm fm$

PRL126, 172502 (2021).

Quark EOS

MIT Bag model:

$$\Omega = \sum_{i} \Omega_{i}^{0} + \frac{3\mu^{4}}{4\pi^{2}}(1 - a_{4}) + B_{\text{eff}}, \quad i = u, d, s, e$$

$$P = -\Omega$$
$$\varepsilon = -P + \sum_{i} \mu_{i} n_{i}$$

 $\Omega_i^0 \rightarrow$ Grand potentials of non-interacting Fermi gas

- $\mu
 ightarrow$ Baryon chemical potential of quarks
- $B_{\mathrm{eff}} \rightarrow \mathrm{Bag} \mathrm{constant}$
 - $a_4 \rightarrow$ Interaction parameter
 - $n_i
 ightarrow$ Number density of *i*-th particle

Presence of quarks inside NS core is favored within RMF models R Nandi, P Char and S Pal, PRC 99, 052802(R) (2019) • In 2019, NICER provided the First simultaneous measurement of mass-radius for PSR **J0030+0451**:

 $M = 1.34^{+0.15}_{-0.16} M_{\odot}, \quad R = 12.71^{+1.14}_{-1.19} \,\mathrm{km}$

Riley et al, *ApJL* 887, L21 (2019)

 $M = 1.44^{+0.15}_{-0.14} M_{\odot}, \quad R = 13.02^{+1.24}_{-1.06} \text{ km}$ Miller et al, *ApJL* 887, L24 (2019).

 In 2021, another measurement was reported by analyzing NICER + XMM Newton data of PSR J0740+6620:

 $M = 2.08 \pm 0.07 M_{\odot}$ $R = 13.7^{+2.63}_{-1.68} \,\mathrm{km}$

Miller et al, *ApJL* 918, L28 (2021).

Constraint on EOS via Bayesian analysis

Biswas et al., PRD 103, 103015 (2021)

Talk by Tuhin Malik

In 2024, NICER provided two more measurements:

• PSR **J0437-4715** (Choudhury et al, ApJ 971, L20 (2024))

 $M = 1.418 \pm 0.037 M_{\odot}, \quad R = 11.36^{+0.95}_{-0.63} \,\mathrm{km}$

• PSR **J1231-1411** (Salmi et al, ApJ 976, 58 (2024))

 $M = 1.04^{+0.05}_{-0.03} M_{\odot}, \quad R = 13.5^{+0.3}_{-0.5} \,\mathrm{km}$

• We are now analyzing the effect of these data on the EOS.

Quark matter

- Still we can't say whether an NS core can shelter quark matter or not.
- We explored the possibility of distinguishing between neutron stars and neutron stars with a quark core (Hybrid stars).

R Mallick, D Kuzur and R Nandi EpJC 82 512 (2022)

EOS considered

- We considered several Relativistic Mean Field (RMF) EOS to describe the hadronic part.
- For the quark part we adopt the MIT Bag model.
- A hybrid star contains hadronic matter at low densities, pure quark phase at high densities and hadron-quark mixed phase at intermediate densities.
- The transition density and the extent of the mixed phase depend on the hadronic EOS and the parameters of the quark matter EOS.

Hard to distinguish !

R Mallick, D Kuzur and R Nandi EpJC 82 512 (2022)

Figure shows how the gravitational mass and radius of a star changes if a hybrid star is formed via phase transition from a NS.

- Although the change in the gravitational mass is relatively small, the radius shrinks considerably.
- Therefore, as phase transition occurs and a quark core is formed inside a star, the star becomes more compact.

- A massive NS after phase transition can become unstable and probably collapses to a Black Hole.
- For a given EOS one can find the upper bound on mass and radius $M_{\rm crit}$ and $R_{\rm crit}$, beyond which it is not possible to produce a stable hybrid star.

If a neutron star undergoing phase transition is more compact it will collapse to a black hole

The change in compactness (and thereby the mass) can be used to estimate the gravitational energy released during the phase transition.

• High density nuclear matter EOS is highly uncertain.

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.
- Most significant constraint came from precise mass measurement.

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.
- Most significant constraint came from precise mass measurement.
- Additional constraint is obtained from the tidal deformability measurement of GW170817 by LIGO-Virgo.

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.
- Most significant constraint came from precise mass measurement.
- Additional constraint is obtained from the tidal deformability measurement of GW170817 by LIGO-Virgo (talk by T K Jha).

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.
- Most significant constraint came from precise mass measurement.
- Additional constraint is obtained from the tidal deformability measurement of GW170817 by LIGO-Virgo (talk by T K Jha).
- And due to NICER's simultaneous mass-radius measurements of a few pulsars.
- Existence of quarks inside neutron star core is still debatable.

- High density nuclear matter EOS is highly uncertain.
- Astrophysical observations of neutron stars can be used to constrain them.
- Most significant constraint came from precise mass measurement.
- Additional constraint is obtained from the tidal deformability measurement of GW170817 by LIGO-Virgo (talk by T K Jha).
- And due to NICER's simultaneous mass-radius measurements of a few pulsars.
- Existence of quarks inside neutron star core is still debatable.
- Trying to find the possible signatures of phase transition in binary neutron star mergers by performing numerical simulation (**Talk by Ritam Mallick**).

Waiting for.....

- Precise radius measurements by NICER.
- Detection of more GW170817 like events by current/future run of LIGO-Virgo and upcoming detectors:
- Detection of continuous gravitational waves.

LISA

Thank You