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Physics of Heavy-ion collision
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[NuPECC Long Range Plan 2017]

Emergent properties of QCD using relativistic
heavy-ion collision:

▶ QCD transitions: De-confinement and
chiral symmetry restoration.

▶ Deconfined state of quarks and gluons :
Quark Gluon Plasma (QGP).

▶ Properties of QGP: viscosity,
conductivity, opacity, polarization and
vorticity.

▶ Phase diagram of QCD:
Thermalization, crossover, first order,
critical point ?
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Long term goal and research focus
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Shear Viscosity [Bernhard et al. (2019)]

Bulk Viscosity [Bernhard et al. (2019)]

Conductivity [Abdulhamid et al. (2024)]

▶ Very precise estimates of
QGP: shear and bulk
viscosity ± errors using
state-of-art Bayesian
estimation has been
done.

▶ For electrical
conductivity is lacking.

Goal: Estimate the electrical
conductivity of Quark-Gluon
Plasma (QGP).
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Different ways to calculate conductivity
 

 

CRC -  TR 

From photon/dilepton spectra

lim
pT→0

dNγ

pT dpT dη
∝ σ̂.

▶ Perturbative method: Kinetic theory 0.19 < σ/T < 2 [Arnold et al. (2000)], [Ghiglieri et al. (2013)],
[Yin (2014)]

▶ Non-perturbative method: LQCD 0.003 < σ/T < 0.018 [Gupta (2004)], [Ding et al. (2011)] [Aarts

and Nikolaev (2021)]

Dynamical space-time evolving QGP: Relativistic MagnetoHyDrodynamics (RMHD)
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Relativistic MagnetoHyDrodynamics (RMHD)
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Fluid conservation laws:

▶ Charge:
∂αJ

α = 0

▶ Energy-momentum:
∂α(T

αβ
fl + Tαβ

em ) = 0

Maxwell’s equation:
∂αF

βα = −Jβ

∂∗
αF

βα = 0
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Relativistic MagnetoHyDrodynamics (RMHD)
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Characteristic velocities:

▶ Fluid velocity v

▶ Speed of sound
√
P/ϵ

▶ Alfvén speed
√

B2/(ϵ+ P )

Plasma become relativistic when they approach the speed of light!
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Ideal Vs resistive RMHD
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▶ Force equation:

F νµuµ = 0

▶ Electric and magnetic fields:

E + v ×B = 0

▶ Electric field:
Always a function of v and
B.
Always perpendicular to B.

▶ Resistivity:
Vanishes everywhere.

▶ Force equation:

F νµuµ = ηIν + ηIµuµu
ν

▶ Current density:

J = γη−1
[
E + v ×B − (E · v)v

]
+ (∇ ·E)v

▶ Electric field:
Independent variable of the physical
system.
Direction is not known a priori.

▶ Resistivity:
Can change spatially and over time.
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Numerical issues and challenges
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Compared to the classical case, this is not a simple task for a relativistic plasma, at least
for the following reasons:

1. High resolution and multi-scale simulation.

2. Large inverse plasma-β parameter (β−1 = B2/2P ) at the periphery of fireball.

3. The relativistic Navier-Stokes PDEs become of mixed hyperbolic/elliptic type,
leading to causality violation.

4. What is the correct Ohm’s law ?

5. Numerical problems in the evolution of E (stiff equations).
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High resolution and multi-scale simulation: BHAC-QGP
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Cylindrical blast Level 1 (200 × 200)

Cylindrical blast Level 2 (100 × 100)

Adaptive Mesh resolution

[Mayer et al. (2024a,b)]

▶ Has been designed to
solve the equations of
ideal general-relativistic
magnetohydrodynamics
in arbitrary space-times

▶ Exploits Adaptive Mesh
Refinement technique

Reduces numerical cost with-
out sacrificing accuracy, ideal
for Bayesian analysis.

Ashutosh Dash Results on magnetohydrodynamics simulations with BHAC-QGP 9



Run times
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Metric W/o B (Grid: 1003) With B (Grid: 1003) With B (AMR Level = 2, Grid: 503)

Total Simulation Time (sec) 877.123 1034.658 782.273
Time Loop Execution Time (sec) 875.220 880.271 774.574
Regrid + Update Time (sec) 0.000 0.000 274.325
Regrid + Update (%) 0.00 0.00% 35.42%
IO Time in Loop (sec) 413.616 407.064 299.177
IO Time in Loop (%) 47.92 47.20% 38.62%
Boundary Condition (BC) Time (sec) 7.348 13.773 16.383
Boundary Condition (BC) (%) 0.83 1.60% 2.12%
Total IO Time (sec) 425.666 419.813 306.860

Table: Comparison of performance metrics for different configurations in a gird of [−20, 20]3 using 64
cores.
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Large inverse plasma-β parameter: Entropy switch
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[Mayer et al. (2024a,b)]

▶ Numerical problem happen
when magnetic
pressure/kinetic pressure >>
1.

▶ BHAC-QGP can handle highly
magnetized regions using
entropy advection equation
instead.
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Code comparisions
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Code Resolution Integrated Spectra/(2π) Integrated v2
BHAC-QGP 1203 11.306612 2.816994
BHAC-QGP 2003 11.284360 2.816532
BHAC-QGP 4003 11.281298 2.818185
ECHO-QGP 1203 12.048414 2.857390
ECHO-QGP 2003 12.052316 2.857811
ECHO-QGP 4003 12.053330 2.857962
VHLLE 1203 12.744606 2.902196
VHLLE 2003 12.822257 2.890757
VHLLE 4003 12.871361 2.902228

Table: Comparison of integrated spectra and integrated v2 for different codes and resolutions.

Numerical entropy production: BHAC-QGP<ECHO-QGP<VHLLE.
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Code Comaprisions
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[Mayer et al. (2024a,b)]

▶ At low pT VHLLE

qualitatively agrees with
ECHO-QGP and BHAC-QGP.

▶ For pT ≥ 1 VHLLE has a
flatter spectra compared to
the other two codes because
of the larger production of
numerical entropy.

Ashutosh Dash Results on magnetohydrodynamics simulations with BHAC-QGP 13



Influence of magnetic field on particle spectra
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▶ Pure magnetic fields (ideal MHD)
although strong, especially outside the
fireball have no significant effect
relevant for HIC.

▶ pT spectra however remains unaffected.

▶ Stronger magnetic field leads to
stronger pressure gradients and
anisotropy, hence larger v2.

▶ Increasing the initial magnetic field
increases the pion production at
mid-rapidity.

▶ Relativistic resistive MHD is required
to do non-zero work.
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Resistive MHD being a stiff problem
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A stiff problem arises in numerical computations when there are widely varying timescales
in a system of equations, such that some components evolve much faster than others.

Why Use IMEX (IMplicit EXplicit) Methods Over Strang Splitting?

▶ Treat stiff terms implicitly for stability.

▶ Treat non-stiff terms explicitly for efficiency.

▶ Avoid restrictive time step limits for stiff terms.
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Resistive MHD being a stiff problem
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Relativity, Causality and Navier-Stokes
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A Minkowski spacetime light cone diagram.

▶ Consider the classic diffusion equation,
starting from equation of continuity:

∂nf (t, x)

∂t
+∇ ·Vf (t, x) = 0

▶ Use the NS form of diffusion equation
Vf (t, x) = −D∇nf (t, x), yielding

∂nf (t, x)

∂t
= D∇2nf

▶ This is acausal !!

▶ Similar problem with Ohm’s law:
Vf (t, x) = σE(t, x)
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Restoring Causality
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Solution to the “Telegrapher’s equation”

Courtesy: Oliver Heaviside

▶ Add a causal time lag to the diffusion
equation,

τc
∂Vf (t, x)

∂t
+Vf (t, x) = −D∇n(t, x)

▶ τc is the relaxation time.

However, this can be more systematically
done, using kinetic theory.
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Kinetic theory and relativistic Boltzmann equation
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Cf = 0 [Rezzolla, Zanotti]

Cf ̸= 0 [Rezzolla, Zanotti]

pµ∂µf ± qFσνp
ν ∂

∂pσ
f = Cf

▶ Relaxation time approximation
Cf := −u · p(f − f0)/τc

▶ Expand in gradients:

f =
∞∑
n=0

[
− τc
u · p

(
pµ∂µ ± qFσνp

ν ∂

∂pσ

)]n

f0

▶ EoM of 2nd order RMHD is obtained by suitable
moments of the series, truncated at second order.
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Relativistic generalization of Ohm’s law
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The evolution equation of diffusion current is given as:

V̇
⟨µ⟩

= βV ∇µα− V µ

τc
− V νω

νµ − λV V V
νσµ

ν − δV V V
µθ + λVΠΠ∇µα− λV ππ

µν∇να

−τV ππ
µ
ν u̇

ν + τVΠΠu̇µ + lV π∆
µν∂γπ

γ
ν − lVΠ∇µΠ− qBδV Bb

µγV γ .

[Mohanty et al. (2019); Dash et al. (2020); Biswas et al. (2020); Panda et al. (2021a,b)]

This is the relativistic generalisation of the Braginskii’s equations, widely utilized in plasma
physics and astrophysics.
[Braginskii (1965); Bessho and Bhattacharjee (2005)]
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Numerical implementation
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▶ Larger τv takes longer
time to approach NS
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µ = − q2

σT V
µ
f Vf,µ

[Dash et al. (2023)]
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The effect of finite conductivity on fluid flow: Bjorken case
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Summary
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BHAC-QGP: Solving 3+1D Relativistic MHD Equations

▶ High-resolution, multi-scale simulations enabled by AMR capabilities.

▶ Efficient handling of large β−1 using an entropy switch mechanism.

▶ Simultaneous treatment of slow and fast variables with IMEX methods.

▶ The standard Navier-Stokes form of Ohm’s law is acausal.

Future Work:

▶ Completion of a 3+1D causal second-order resistive MHD framework.

▶ Investigation of the dynamics of EM fields and charge diffusion with finite net charge [Parida

and Chatterjee (2023)].

▶ Constraining the electrical conductivity σ through comparison with experimental data
[Abdulhamid et al. (2024)].
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