Results on magnetohydrodynamics simulations with BHAC-QGP

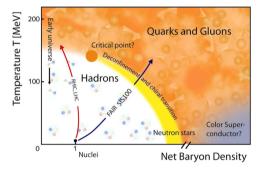
Ashutosh Dash

Institute for Theoretical Physics, Goethe University, Frankfurt am Main

with M. Mayer, G. Inghirami, H. Elfner, L. Rezzolla, D. H. Rischke

- Broad Overview of Research Area
- Key Research Contributions and Results
- Future Research Directions and Goals
- Teaching Philosophy and Plan

Physics of Heavy-ion collision

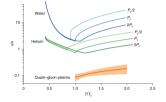


[NuPECC Long Range Plan 2017]

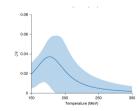
Emergent properties of QCD using relativistic heavy-ion collision:

- QCD transitions: De-confinement and chiral symmetry restoration.
- Deconfined state of quarks and gluons : Quark Gluon Plasma (QGP).
- Properties of QGP: viscosity, conductivity, opacity, polarization and vorticity.
- Phase diagram of QCD: Thermalization, crossover, first order, critical point ?

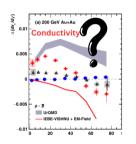
Long term goal and research focus



Shear Viscosity [Bernhard et al. (2019)]



Bulk Viscosity [Bernhard et al. (2019)]



Conductivity [Abdulhamid et al. (2024)]

Very precise estimates of QGP: shear and bulk viscosity ± errors using state-of-art Bayesian estimation has been done.

 For electrical conductivity is lacking.

Goal: Estimate the electrical conductivity of Quark-Gluon Plasma (QGP).

From photon/dilepton spectra

$$\lim_{p_T \to 0} \frac{dN_{\gamma}}{p_T \, dp_T \, d\eta} \propto \hat{\sigma}.$$

- Perturbative method: Kinetic theory $0.19 < \sigma/T < 2$ [Arnold et al. (2000)], [Ghiglieri et al. (2013)], [Yin (2014)]
- Non-perturbative method: LQCD $0.003 < \sigma/T < 0.018$ [Gupta (2004)], [Ding et al. (2011)] [Aarts and Nikolaev (2021)]

Dynamical space-time evolving QGP: Relativistic MagnetoHyDrodynamics (RMHD)

Fluid conservation laws:

Charge:

$$\partial_{\alpha}(T_{\rm fl}^{\alpha\beta}+T_{\rm em}^{\alpha\beta})=0$$

 $\partial_{\alpha}J^{\alpha} = 0$

Maxwell's equation:

$$\partial_{\alpha}F^{\beta\alpha} = -J^{\beta}$$
$$\partial_{\alpha}^{*}F^{\beta\alpha} = 0$$

Characteristic velocities:

- Fluid velocity v
- Speed of sound $\sqrt{P/\epsilon}$
- \blacktriangleright Alfvén speed $\sqrt{B^2/(\epsilon+P)}$

Plasma become relativistic when they approach the speed of light!

Ideal Vs resistive RMHD

Force equation:

$$F^{\nu\mu}u_{\mu} = 0$$

Electric and magnetic fields:

 $\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} = 0$

- Electric field:
 - Always a function of v and B.
 - Always perpendicular to **B**.
- Resistivity:
 - Vanishes everywhere.

Force equation:

- $F^{\nu\mu}u_{\mu} = \eta I^{\nu} + \eta I^{\mu}u_{\mu}u^{\nu}$
- Current density:

$$oldsymbol{J} = \gamma \eta^{-1} \left[oldsymbol{E} + oldsymbol{v} imes oldsymbol{B} - (oldsymbol{E} \cdot oldsymbol{v}) oldsymbol{v}
ight] \ + (
abla \cdot oldsymbol{E}) oldsymbol{v}$$

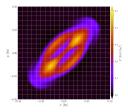
Electric field:

- Independent variable of the physical system.
- Direction is not known *a priori*.
- Resistivity:
 - Can change spatially and over time.

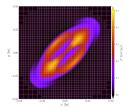
Compared to the classical case, this is not a simple task for a relativistic plasma, at least for the following reasons:

- 1. High resolution and multi-scale simulation.
- 2. Large inverse plasma- β parameter ($\beta^{-1} = B^2/2P$) at the periphery of fireball.
- 3. The relativistic Navier-Stokes PDEs become of mixed hyperbolic/elliptic type, leading to causality violation.
- 4. What is the correct Ohm's law ?
- 5. Numerical problems in the evolution of E (stiff equations).

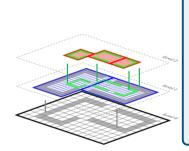
High resolution and multi-scale simulation: BHAC-QGP



Cylindrical blast Level 1 (200 imes 200)



Cylindrical blast Level 2 (100×100)



Adaptive Mesh resolution

[Mayer et al. (2024a,b)]

Has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary space-times

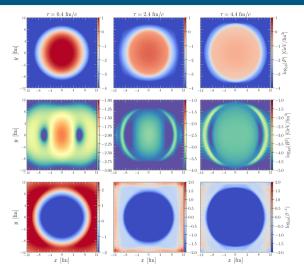
 Exploits Adaptive Mesh Refinement technique

Reduces numerical cost without sacrificing accuracy, ideal for Bayesian analysis.

Metric	W/o B (Grid: 100 ³)	With B (Grid: 100^3)	With B (AMR Level = 2, Grid: 50^3)
Total Simulation Time (sec)	877.123	1034.658	782.273
Time Loop Execution Time (sec)	875.220	880.271	774.574
Regrid + Update Time (sec)	0.000	0.000	274.325
Regrid + Update (%)	0.00	0.00%	35.42%
IO Time in Loop (sec)	413.616	407.064	299.177
IO Time in Loop (%)	47.92	47.20%	38.62%
Boundary Condition (BC) Time (sec)	7.348	13.773	16.383
Boundary Condition (BC) (%)	0.83	1.60%	2.12%
Total IO Time (sec)	425.666	419.813	306.860

Table: Comparison of performance metrics for different configurations in a gird of $[-20, 20]^3$ using 64 cores.

Large inverse plasma- β parameter: Entropy switch



- Numerical problem happen when magnetic pressure/kinetic pressure >> 1.
- BHAC-QGP can handle highly magnetized regions using entropy advection equation instead.

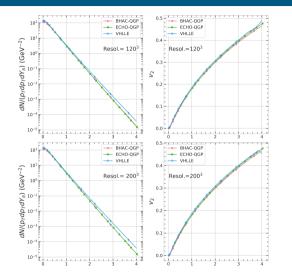
[Mayer et al. (2024a,b)]

Code	Resolution	Integrated Spectra/ (2π)	Integrated v_2
BHAC-QGP	120^{3}	11.306612	2.816994
BHAC-QGP	200^{3}	11.284360	2.816532
BHAC-QGP	400^{3}	11.281298	2.818185
ECHO-QGP	120^{3}	12.048414	2.857390
ECHO-QGP	200^{3}	12.052316	2.857811
ECHO-QGP	400^{3}	12.053330	2.857962
VHLLE	120^{3}	12.744606	2.902196
VHLLE	200^{3}	12.822257	2.890757
VHLLE	400 ³	12.871361	2.902228

Table: Comparison of integrated spectra and integrated v_2 for different codes and resolutions.

Numerical entropy production: BHAC-QGP<ECHO-QGP<VHLLE.

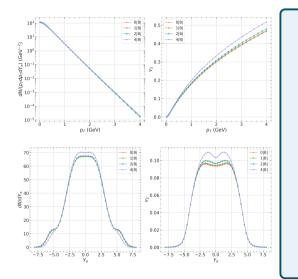
Code Comaprisions



- At low p_T VHLLE qualitatively agrees with ECHO-QGP and BHAC-QGP.
- ► For p_T ≥ 1 VHLLE has a flatter spectra compared to the other two codes because of the larger production of numerical entropy.

[Mayer et al. (2024a,b)]

Influence of magnetic field on particle spectra



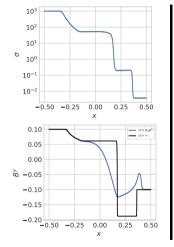
- Pure magnetic fields (ideal MHD) although strong, especially outside the fireball have no significant effect relevant for HIC.
- ▶ *p*_{*T*} spectra however remains unaffected.
- Stronger magnetic field leads to stronger pressure gradients and anisotropy, hence larger v₂.
- Increasing the initial magnetic field increases the pion production at mid-rapidity.
- Relativistic resistive MHD is required to do non-zero work.

A **stiff problem** arises in numerical computations when there are widely varying timescales in a system of equations, such that some components evolve much faster than others.

Why Use IMEX (IMplicit EXplicit) Methods Over Strang Splitting?

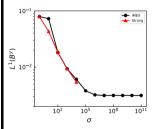
- Treat stiff terms implicitly for stability.
- ► Treat non-stiff terms **explicitly** for efficiency.
- Avoid restrictive time step limits for stiff terms.

Resistive MHD being a stiff problem

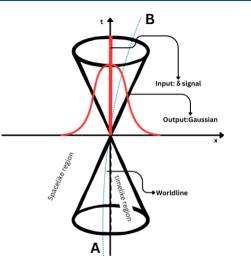


For x < 0, ideal-MHD and for x > 0, resistive-MHD (vacuum).

- BHAC-QGP can handle non-uniform conductivity profiles even in the presence of shocks.
- \blacktriangleright Strang-splitting solutions becomes unstable beyond $\sigma>10^4$



Relativity, Causality and Navier-Stokes



A Minkowski spacetime light cone diagram.

 Consider the classic diffusion equation, starting from equation of continuity:

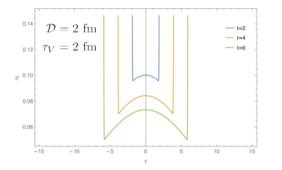
$$\frac{\partial n_f(t,x)}{\partial t} + \nabla \cdot \mathbf{V}_f(t,x) = 0$$

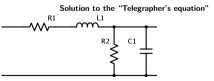
► Use the NS form of diffusion equation $\mathbf{V}_{f}(t, x) = -\mathcal{D}\nabla n_{f}(t, x)$, yielding

$$\frac{\partial n_f(t,x)}{\partial t} = \mathcal{D}\nabla^2 n_f$$

- This is acausal !!
- Similar problem with Ohm's law: $V_f(t, x) = \sigma \mathbf{E}(t, x)$

Restoring Causality





Courtesy: Oliver Heaviside

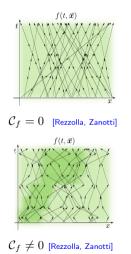
 Add a causal time lag to the diffusion equation,

$$\tau_c \frac{\partial \mathbf{V}_f(t, x)}{\partial t} + \mathbf{V}_f(t, x) = -\mathcal{D}\nabla n(t, x)$$

 \blacktriangleright τ_c is the relaxation time.

However, this can be more systematically done, using kinetic theory.

Kinetic theory and relativistic Boltzmann equation



$$p^{\mu}\partial_{\mu}f \pm qF_{\sigma\nu}p^{\nu}\frac{\partial}{\partial p_{\sigma}}f = \mathcal{C}_{f}$$

- Relaxation time approximation $C_f := -u \cdot p(f - f_0) / \tau_c$
- Expand in gradients:

$$f = \sum_{n=0}^{\infty} \left[-\frac{\tau_c}{u \cdot p} \left(p^{\mu} \partial_{\mu} \pm q F_{\sigma\nu} p^{\nu} \frac{\partial}{\partial p_{\sigma}} \right) \right]^n f_0$$

EoM of 2nd order RMHD is obtained by suitable moments of the series, truncated at second order.

The evolution equation of diffusion current is given as:

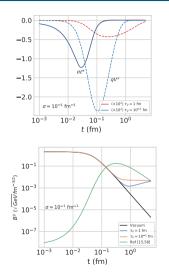
$$\dot{\boldsymbol{V}}^{\langle \mu \rangle} = \underline{\beta_V \nabla^{\mu} \alpha}_{-\tau_V \pi} - \frac{V^{\mu}}{\underline{\tau_c}} - V_{\nu} \omega^{\nu \mu} - \lambda_{VV} V^{\nu} \sigma^{\mu}_{\nu} - \delta_{VV} V^{\mu} \theta + \lambda_{V\Pi} \Pi \nabla^{\mu} \alpha - \lambda_{V\pi} \pi^{\mu \nu} \nabla_{\nu} \alpha \\ - \tau_{V\pi} \pi^{\mu}_{\nu} \dot{\boldsymbol{u}}^{\nu} + \tau_{V\Pi} \Pi \dot{\boldsymbol{u}}^{\mu} + l_{V\pi} \Delta^{\mu \nu} \partial_{\gamma} \pi^{\gamma}_{\nu} - l_{V\Pi} \nabla^{\mu} \Pi - q B \delta_{VB} b^{\mu \gamma} \boldsymbol{V}_{\gamma}.$$

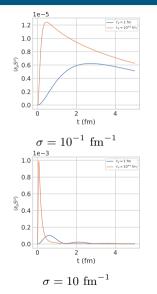
[Mohanty et al. (2019); Dash et al. (2020); Biswas et al. (2020); Panda et al. (2021a,b)]

This is the relativistic generalisation of the Braginskii's equations, widely utilized in plasma physics and astrophysics.

[Braginskii (1965); Bessho and Bhattacharjee (2005)]

Numerical implementation





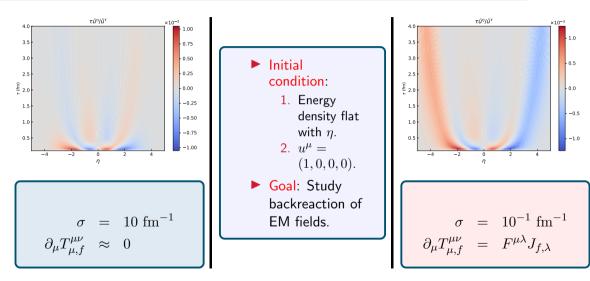
- Larger \(\tau_v\) takes longer time to approach NS value.
- Longer \(\tau_v\) means incomplete response of the charge diffusion current and hence leads to faster decay of magnetic field.

$$\blacktriangleright \ \partial_{\mu}S^{\mu} = -\frac{q^2}{\sigma T}V_f^{\mu}V_{f,\mu}$$

[Dash et al. (2023)]

Ashutosh Dash

The effect of finite conductivity on fluid flow: Bjorken case



Summary

BHAC-QGP: Solving 3+1D Relativistic MHD Equations

- ▶ High-resolution, multi-scale simulations enabled by AMR capabilities.
- Efficient handling of large β^{-1} using an entropy switch mechanism.
- Simultaneous treatment of slow and fast variables with IMEX methods.
- The standard Navier-Stokes form of Ohm's law is acausal.

Future Work:

- ► Completion of a 3+1D causal second-order resistive MHD framework.
- Investigation of the dynamics of EM fields and charge diffusion with finite net charge [Parida and Chatterjee (2023)].
- Constraining the electrical conductivity σ through comparison with experimental data [Abdulhamid et al. (2024)].

Thanks for your attention

- Aarts, G. and Nikolaev, A. (2021). Electrical conductivity of the quark-gluon plasma: perspective from lattice QCD. Eur. Phys. J. A, 57(4):118.
- Abdulhamid, M. I. et al. (2024). Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider. *Phys. Rev. X*, 14(1):011028.
- Arnold, P. B., Moore, G. D., and Yaffe, L. G. (2000). Transport coefficients in high temperature gauge theories. 1. Leading log results. *JHEP*, 11:001.
- Bernhard, J. E., Moreland, J. S., and Bass, S. A. (2019). Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. *Nature Phys.*, 15(11):1113–1117.
- Bessho, N. and Bhattacharjee, A. (2005). Collisionless reconnection in an electron-positron plasma. *Phys. Rev. Lett.*, 95:245001.
- Biswas, R., Dash, A., Haque, N., Pu, S., and Roy, V. (2020). Causality and stability in relativistic viscous non-resistive magneto-fluid dynamics. *JHEP*, 10:171.
- Braginskii, S. I. (1965). Transport Processes in a Plasma. Reviews of Plasma Physics, 1:205.
- Dash, A., Samanta, S., Dey, J., Gangopadhyaya, U., Ghosh, S., and Roy, V. (2020). Anisotropic transport properties of a hadron resonance gas in a magnetic field. *Phys. Rev. D*, 102(1):016016.
- Dash, A., Shokri, M., Rezzolla, L., and Rischke, D. H. (2023). Charge diffusion in relativistic resistive second-order dissipative magnetohydrodynamics. *Phys. Rev. D*, 107(5):056003.
- Ding, H. T., Francis, A., Kaczmarek, O., Karsch, F., Laermann, E., and Soeldner, W. (2011). Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD. *Phys. Rev. D*, 83:034504.

- Ghiglieri, J., Hong, J., Kurkela, A., Lu, E., Moore, G. D., and Teaney, D. (2013). Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma. *JHEP*, 05:010.
- Gupta, S. (2004). The Electrical conductivity and soft photon emissivity of the QCD plasma. *Phys. Lett. B*, 597:57–62.
- Mayer, M., Rezzolla, L., Elfner, H., Inghirami, G., and Rischke, D. H. (2024a). BHAC-QGP: three-dimensional MHD simulations of relativistic heavy-ion collisions, I. Methods and tests.
- Mayer, M., Rezzolla, L., Elfner, H., Inghirami, G., and Rischke, D. H. (2024b). BHAC-QGP: three-dimensional MHD simulations of relativistic heavy-ion collisions, II. Application to Au-Au collisions.
- Mohanty, P., Dash, A., and Roy, V. (2019). One particle distribution function and shear viscosity in magnetic field: a relaxation time approach. *Eur. Phys. J. A*, 55(3):35.
- Panda, A. K., Dash, A., Biswas, R., and Roy, V. (2021a). Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory: a relaxation time approach. *JHEP*, 03:216.
- Panda, A. K., Dash, A., Biswas, R., and Roy, V. (2021b). Relativistic resistive dissipative magnetohydrodynamics from the relaxation time approximation. *Phys. Rev. D*, 104(5):054004.
- Parida, T. and Chatterjee, S. (2023). Baryon inhomogeneities driven charge dependent directed flow in heavy ion collisions.
- Yin, Y. (2014). Electrical conductivity of the quark-gluon plasma and soft photon spectrum in heavy-ion collisions. *Phys. Rev. C*, 90(4):044903.