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Major Questions in EIC Physics
Spin puzzleOrigin of mass

Ortibal angular momentum
𝐿 = Ԧ𝑟 × Ԧ𝑝

Nuclear force

I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.
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We need to know 3D tomography of nucleon and how 
it emerges from QCD ?  

ℒ𝑄𝐶𝐷 = ത𝜓𝑞(𝑖𝐷 − 𝑚𝑞)𝜓𝑞 −
1

4
𝐺𝜇𝜈
𝛼 𝐺𝛼

𝜇𝜈/
?
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Upcoming Electron-Ion Colliders

• EIC in the US is under construction by BNL@New York
• EicC in China is planned by IMPCAS@Huizhou

• Electron-Ion colliders with large collision energy and high luminosity

Complimentarity
4



Nonperturbative Approach
• Stationary Schrödinger equation universally describes bound-

state structure

Nonrelativistic Nonrelativistic Relativistic

atom nucleus nucleon

• Eigenstates 𝜓 encode full information of the system

𝐻 𝜓 = 𝐸|𝜓〉
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• Major challenges from relativity: retardation effects 



t º x0
2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||∂x/ ∂x||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dω0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one defines the hypersphere

as that locus in four-space on which one sets the ‘init ial condit ions’ at the same ‘init ial

t ime’, or on which one ‘quant izes’ the system correspondingly in a quantum theory. The

hypersphere is thus defined as that locus in four-space with the same value of the ‘t ime-

like’ coordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called ‘space-like’ and denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0
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of preference and convenience.

2D Forms of H amilt onian Dynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a

i
¶

¶t
j(t) = H j(t) i

¶

¶x+
j(x+ ) =

1

2
P- j(x+ )

P0 = m2 + P2
P- =

m2 + P̂2

P+

𝑥1, 𝑥2, 𝑥3

𝑃0, 𝑃

𝑥− = 𝑥0 − 𝑥3,
𝑥⊥ = 𝑥1,2

𝑃− = 𝑃0 − 𝑃3,
𝑃+ = 𝑃0 + 𝑃3,𝑃⊥ = 𝑃1,2

Main advantage:

• Frame-independent wave functions

• Minkowski spacetime

• No square roots in dispersion relation

Light-front Quantization
Equal time quantization Light-front quantization [Dirac, 1949]

Φ 𝛾+ 𝑥, 𝑄2 ~ ቚ𝑃′, Λ ത𝜓 𝑥 𝛾+𝜓 0 𝑃, Λ
𝑥+=𝑥⊥=0



Basis Light-Front Quantization
➢ Hamiltonian eigenvalue equation:

𝑃− ۧ𝑁 = 𝑃𝑁
− ۧ𝑁

o 𝑷−: Light-Front Hamiltonian
o | ۧ𝑵 : Eigenstates
o 𝑷𝑵

−: Eigenvalues for eigenstates

[Vary, et.al, 2010] 

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + ⋅⋅⋅⋅⋅⋅- Fock sector expansion:

- single particle basis:

𝑞𝑞𝑞 = |𝑛1, 𝑚1, 𝑛2, 𝑚2, 𝑛3, 𝑚3ۧ

2-d harmonic oscillator
(2DHO)

⨂ |𝑘1
+, 𝑘2

+, 𝑘3
+ۧ ⨂|𝜆1, 𝜆2, 𝜆3, 𝐶ۧ

Discretized longitudinal 
momentum

Helicity and color

෍

𝑖

(2𝑛𝑖 + 𝑚𝑖 + 1) ≤ 𝑁max ෍

𝑖

𝑘𝑖
+ = 𝐾max

➢ Basis setup:

m𝐽 =෍

𝑖

(𝜆𝑖 +𝑚𝑖)

➢ Advantages for 2D HO: 
- rotational symmetry in transverse plane
- center-of-mass motion is factorizable



Dimension of Basis Space
➢Expansion in BLFQ basis

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔 + |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

| ۧ𝑞𝑞𝑞 𝑞𝑞𝑞𝑔 𝑞𝑞𝑞 𝑞ത𝑞 𝑞𝑞𝑞 𝑔𝑔 𝑞𝑞𝑞 𝑔𝑔𝑔 |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

dimension 35,088 592,960 3,901,500 5,169,360 19,603,584 7,128,576

color config 1 2 3 6 22 8

𝑁𝑚𝑎𝑥 = 7, 𝐾𝑚𝑎𝑥 = 16

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠

Basis Dimension= 12,332,548

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + |𝑞𝑞𝑞 𝑔𝑔ۧ

Basis Dimension= 17,501,908

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔

Basis Dimension= 37,105,492

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔 + |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

Basis Dimension= 58,491,220



QCD Light-front Hamiltonian
➢ QCD light-front Hamiltonian from QCD Lagrangian:

𝑃𝑄𝐶𝐷
− = 𝐻𝐾 +𝐻𝐼ℒ𝑄𝐶𝐷 = ത𝜓 𝑖𝐷 − 𝑚 𝜓 −

1

4
𝐺𝜇𝜈
𝛼 𝐺𝛼

𝜇𝜈/

𝐻𝐾 =

𝐻𝐼 =

𝜓: quark field operator
𝐴𝜇
𝑎: gluon field operator

𝐴+ = 0

7 terms in 𝐻𝐼



BLFQ Algorithm Flowchart

Hamiltonian Matrix Generation

Diagonalize Hamiltonian Matrix

Light-Front Wave Functions

Distribution Functions, Form Factors, PDFs, 
GPDs, TMDs…

Basis Enumeration



Progress toward First Principles

➢ GPDs:

➢ TMDs:

N =| ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

➢ Wave Functions:

12

[arXiv:2408.11298] (2024) [PRD,102,016008] (2019) [PRD,108 9, 094002] (2023) 

[PRD,104,094036] (2021)

[PRD,105,094018] (2022)

[PRD,109,014015] (2024)

[PLB,855,138809] (2024)

[PLB,833,137360] (2022)

[PRD,108,036009] (2023)

[PLB,847,138305] (2023)

[PRD,110.056027] (2024)

[PLB,860,139153] (2025)

➢ Higher-twist Distribution (GPD,TMD,DPD):

[PRD,109,034031] (2024)

[PLB,855 138831] (2024)

[PLB,855 138829] (2024)

[arXiv:2410.11574] (2024)

➢ Gravitational Form Factors:
[PRD,110,056027] (2024)



Progress toward First Principles

➢ PDFs:

➢ GPDs/TMDs:

Meson =| ۧ𝑞ത𝑞 + 𝑞ത𝑞𝑔 + 𝑞ത𝑞𝑢ത𝑢 + 𝑞ത𝑞𝑑 ҧ𝑑 + 𝑞ത𝑞𝑠 ҧ𝑠 + ⋯

➢ Wave Functions:

➢ Higher-twist Distribution (GPD,TMD,DPD):

PLB,758,118-124(2016)
PRD,96,016022(2017)
PRC,99,035206 (2019)

PRL,122,172001(2019)
PRD,101,034024(2019)
PRD,102,014020(2020)

PRD,104,11401(2021)

PRD,104,094034(2021)

PLB,825,136890(2022)

2406.18878 [hep-ph]

PLB,851,138563(2024)

2408.06870 [hep-ph]

PLB,839,137808(2023)

➢ Transition FFs:

[xxxx.xxxxx](2025) 
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Proton with QCD Hamiltonian
ۧ𝑁 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑢ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑞𝑔𝑔𝑔

+ 𝑞𝑞𝑞𝑢ത𝑢𝑔 + 𝑞𝑞𝑞𝑑 ҧ𝑑𝑔 + 𝑞𝑞𝑞𝑠 ҧ𝑠𝑔

𝑷− = 𝑯𝑲 +𝑯𝑰 𝑯𝑲 =෍

𝒊

𝒑𝒊
𝟐 +𝒎𝒒

𝟐

𝒑𝒊
+

𝑯𝑰 = 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭
𝟐

𝒋+
𝟏

𝒊𝝏+ 𝟐
𝒋+ +

𝒈𝟐𝑪𝑭
𝟐

ഥ𝝍𝜸𝝁𝑨𝝁
𝜸+

𝒊𝝏+
𝑨𝝂𝜸

𝝂𝝍

−𝒈𝟐𝑪𝑭ഥ𝝍𝜸
+𝝍

𝟏

𝒊𝝏+ 𝟐
𝒊𝝏+𝑨𝝁

𝒂𝑨𝒃
𝝁
+ 𝒊𝒈𝒇𝒂𝒃𝒄𝒊𝝏𝝁𝑨𝒂

𝝂𝑨𝝁
𝒃𝑨𝝂

𝒄

+
𝟏

𝟒
𝒈𝟐𝒇𝒂𝒃𝒄𝒇𝒂𝒅𝒆𝑨𝒃

𝝁
𝑨𝒄
𝝂𝑨𝝁𝒅𝑨𝝂𝒆 −

𝟏

𝟐
𝒈𝟐𝒇𝒂𝒃𝒄𝒇𝒂𝒅𝒆𝒊𝝏+𝑨𝒃

𝝁
𝑨𝝁𝒄

𝟏

𝒊𝝏+ 𝟐 (𝒊𝝏
+𝑨𝒅

𝝂𝑨𝝂𝒆)

QED and QCD QCD  only



Fock Sector Decomposition

Valence Fock sector
𝑞𝑞𝑞 ∼ 48.46%

dynamic gluon Fock sectors
𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔 ∼ 50.26%

sea quark
Fock sectors

𝑞𝑞𝑞 𝑢ത𝑢 ∼ 0.13%

𝑞𝑞𝑞 𝑑 ҧ𝑑 ∼ 0.14%

𝑞𝑞𝑞 𝑠 ҧ𝑠 ∼ 0.14%
𝑞𝑞𝑞 𝑢ത𝑢𝑔 ∼ 0.04%

𝑞𝑞𝑞 𝑑 ҧ𝑑𝑔 ∼ 0.05%
𝑞𝑞𝑞 𝑠 ҧ𝑠𝑔 ∼ 0.05%

𝒎𝒖 𝒎𝒅 𝒎𝒔 𝒎𝒇 𝒈 𝒃 𝒃𝒊𝒏𝒔𝒕

0.5 GeV 0.40 GeV 0.6 GeV 2.2 GeV 2.5 0.6 GeV 3.0 GeV

𝑞𝑞𝑞 𝑞ത𝑞𝑔 ~ 8 color singlet state

4 octet ⨂ octet ⨂ octet

3 singlet ⨂ octet ⨂ octet

1 decuplet ⨂ octet ⨂ octet

Truncation parameter: 𝑁max = 7 and 𝐾max = 10

𝑞𝑞𝑞 𝑔𝑔𝑔 ~ 22 color singlet state

2 singlet ⨂ singlet

16 octet ⨂ octet

4 decuplet ⨂ octet ⨂ octet ⨂ octet

ۧ𝑁 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑢ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑢ത𝑢𝑔 + 𝑞𝑞𝑞𝑑 ҧ𝑑𝑔 + 𝑞𝑞𝑞𝑠 ҧ𝑠𝑔
+ 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑞𝑔𝑔𝑔



Nucleon Form Factors

• BLFQ results qualitatively agree  with the experimental data for Dirac and Pauli FFs

𝑟𝑃
𝑐 = 0.784 fm

𝑟𝑃
𝑀 = 0.832 fm

𝜇𝑝 = 1.49 (𝐸𝑋𝑃: 2.79)

Preliminary



All results are at the initial scale

Unpolarized Parton Distribution Functions
➢Parton distribution functions with 6-parton Fock sectors

• Endpoint behavior improves with |𝑞𝑞𝑞𝑞ത𝑞𝑔ۧ and |𝑞𝑞𝑞𝑔𝑔𝑔ۧ Fock sector included

• Qualitative behavior agree with experimental results

Preliminary



Helicity Parton Distribution Functions

Helicity PDFs:

• Including Higher Fock sectors

• Significantly increasing the helicity 

contribution of gluon to proton spin

24

ۧ𝑁 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑢ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑞𝑔𝑔𝑔

+ 𝑞𝑞𝑞𝑢ത𝑢𝑔 + 𝑞𝑞𝑞𝑑 ҧ𝑑𝑔 + 𝑞𝑞𝑞𝑠 ҧ𝑠𝑔

ΔΣ𝑢 = 0.94 ΔΣ𝑢 = 0.21 ΔΣ = 0.73

Δ𝐺 = 0.12 (JAM: 0.2)

Preliminary



Axial Form Factor of The Proton
➢ Provide information on axial charge distributions

𝐺𝐴 𝑄2 = 𝐺𝑢 𝑄2 − 𝐺𝑑(𝑄
2)

• Black line: valence quark
• Blue line: gluon
• Valence quark 

contributions agree with 
the experimental data



Dimension of Basis Space
➢Expansion in BLFQ basis

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔 + |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

| ۧ𝑞𝑞𝑞 𝑞𝑞𝑞𝑔 𝑞𝑞𝑞 𝑞ത𝑞 𝑞𝑞𝑞 𝑔𝑔 𝑞𝑞𝑞 𝑔𝑔𝑔 |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

dimension 35,088 592,960 3,901,500 5,169,360 19,603,584 7,128,576

color config 1 2 3 6 22 8

𝑁𝑚𝑎𝑥 = 7, 𝐾𝑚𝑎𝑥 = 16

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠

Basis Dimension= 12,332,548

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + |𝑞𝑞𝑞 𝑔𝑔ۧ

Basis Dimension= 17,501,908

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔

Basis Dimension= 37,105,492

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔 + 𝑞𝑞𝑞 𝑔𝑔𝑔 + |𝑞𝑞𝑞 𝑞ത𝑞 𝑔ۧ

Basis Dimension= 58,491,220



BLFQ with Heterogeneous Computing

Optimized on GPUHamiltonian Matrix Generation

Diagonalize Hamiltonian Matrix

Light-Front Wave Functions

Distribution Functions, Form Factors, PDFs, 
GPDs, TMDs…

Basis Enumeration



BLFQ Optimization - Hamiltonian

Hamiltonian Matrix Generation

High Concurrency Algorithm for GPU: 
AtomicAdd and Parallel Sorting

Hamiltonian Matrix Generation
- Optimized for GPU

n=7 k=8
n=7 
k=10

n=9 k=6
n=7 
k=14

n=7 k=16

CPU(s) 245.9 1098.699 2318.8 10805.2 30793.2

GPU(s) 73.3 343.7 188.8 920.3 1887.5

Ratio 3.35 3.2 12.28 11.74 16.31



BLFQ Optimization - Diagonalization

Diagonalization: Arpack

Replace the Basic function
BLAS ->  HIPBLAS
LAPACK -> GPU Adaptation

Reprogram the Kernel:
Arpack Kernel, Matrix Multiplication

https://github.com/opencollab/arpack-ng

56 CPU threads vs 4 GPUs



Conclusions
• Basis Light-front Quantization: non-perturbative approach to 

QFT in Minkowski spacetime
• Systematically extendable toward first-principle calculations

• Light-front wave function available for evaluating nucleon 3D 
tomography at EICs

• Results improve with increasing Fock space        Fock sector 
expansion works

• Recent progress:
- Expanding Fock sectors

- Incorporating all QCD interactions

- Higher-twist observables: correlation between partons

- Developing GPU/CPU hybrid codes

Toward first-principles



Outlook
Current status

Full QCD interaction

Fock sector expansion
𝑞𝑞𝑞 𝑞ത𝑞 𝑔 and 𝑞𝑞𝑞 𝑔𝑔𝑔 ……

Deutron calculation
𝑞𝑞𝑞 𝑞𝑞𝑞 + 𝑞𝑞𝑞 𝑞𝑞𝑞 𝑔

EMC effect

Intrinsic charm Sea asymmetry Origin of spin and mass

I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.

1
P i c t u r es ( t op t o b ot t om ) t ak en f r om A . Si gn or i ’ s t a l k , J . Q u i t a l k , C . L or ce’ s t a l k
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Thank you!
You are welcome to 

visit Huizhou!☺


