Resonances in Heavy Ion collisions

Sadhana Dash

IIT BOMBAY

10th Asian Triangle Heavy-ion conference- ATHIC 2025 13/01/2025 - 16/01/2025

Before collision

Ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Deconfined soup

Ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard

Quark Gluon Plasma

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Hadronization

Ref: MADAI collaboration, Hannah Petersen and Jonah Bernhard

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Freeze-Out

Time (fm/c)

10th Asian Triangle Heavy-ion conference- ATHIC 2025 14/01/2025

What are Resonances and why study them ?

10th Asian Triangle Heavy-ion conference- ATHIC 2025

Experimental physicists observed pronounced peaks in the detection rate as they varied the collision energy.

Many of the bumps were very broad, suggesting the existence of particles that existed for barely more than a trillionth of a trillionth of a second.

These new ephemeral particles were fundamentally no different from protons and neutrons except for their short lifetimes. These short-lived particles are often simply referred to as "resonances".

What are Resonances and why study them ?

10th Asian Triangle Heavy-ion conference- ATHIC 2025 14/01/2025

Short lifetimes, comparable to the one of the hadronic gas phase (T ~ few fm/ c) makes them suitable probes to study the properties of the hadronic phase in

Hadronic Phase

Time (fm/c)

Kinetic Freeze Out

Hadronization **Deconfined** Phase

Chemical Freeze Out

Hadronic Phase

Time (fm/c)

dronization Ha

Deconfined Phase

Out Freeze Chemical

 $\phi(1020)$

Hadronic Phase

eze Ň U Kinetic

Out

Freeze

Kinetic |

Final reconstructible resonance yield

Regeneration

Chemical Freeze out temperature Duration of hadronic phase Lifetime of resonance particle Scattering cross-section of decay daughters

How do we detect resonances?

- Reconstruction via invariant mass technique
- **Background subtraction**
- Fitting the signal with appropriate functions to extract yields

Resonance	ρ ⁰ (770)	K*(892)	f ⁰ (980)	<i>φ</i> (1020)	$f_1(1285)$	Σ [±] (1385)	Λ ⁰ (1520)	Ξ ⁰ (1530
<i>τ</i> (fm/c)	1.3	4.2	5 (with large uncertainties)	46	22.7	5.2	12.6	21.7
Quark content	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	ds		<u>S</u> 5		uus, dds	uds	USS

106 (2022) 034907 Phys.Rev.C

Mesonic Resonance : pt spectra

Mesonic Resonance : pt spectra

Phys.Rev.C 106 (2022) 034907

Mesonic Resonance : pt spectra

Mesonic Resonance : pt spectra

no significant difference between central and peripheral collisions.

For low p_T (< 3 GeV/c), the data/blast wave for K* meson is lower than unity with a deviation of $\sim(40 - 60)$ % in central collisions.

For low p_T (< 2 GeV/c), the data/blast wave for phi meson is close to unity and

Phys.Rev.C 106 (2022) 034907

<pr> values increase with charged particle multiplicity

<pr> values increase with charged particle multiplicity

Larger for higher energies at similar values of $\langle dN_{ch}/d\eta \rangle$

<pr> values increase with charged particle multiplicity

Larger for higher energies at similar values of $\langle dN_{ch}/d\eta \rangle$

Rise in $\langle p_T \rangle$ is steeper for hadrons with higher mass : Radial flow effect

Breaking of mass ordering in peripheral collisions.

034907 106 (2022) Phys.Rev.C

Particle Ratios (K* $^{/K}$ & ϕ/K)

K*/K :

Suppression of K*/K ratio from peripheral to central collisions. Clear system and size dependence observed.

EPOS3 overestimates the data while predicts the trend.

Particle Ratios (K*/K & ϕ/K)

Particle Ratios (K*/K & ϕ/K)

$$\phi$$
/K :

No suppression of ϕ /K ratio from peripheral to central collisions. EPOS3 predicts the data well.

034907 106 (2022) Phys.Rev.C

Particle Ratios (K*/K & ϕ/K)

In-medium loss (I)

At low p_T (< 2 GeV/c), K* values are the smallest : consistent with the picture of the rescattering effect.

 R_{AA} values in the intermediate-pt range show species dependence with evidence of baryon-meson splitting.

For $p_T > 8$ GeV/c, all the particle species show similar R_{AA} within the uncertainties.

This observation suggests that suppression of various light flavored hadrons is independent of their quark content and mass for $p_T > 8 \text{ GeV/c}$.

In-medium loss (II)

The R_{AA} of K* is found to be the smallest in most central collisions.

Gradually increases towards more peripheral collisions.

The results are consistent with centrality-dependent energy loss of partons

Baryonic Resonance : pt spectra

Good agreement with Blast-Wave ($\pi/K/p$ fits). Quite close to MUSIC hydrodynamic models with SMASH afterburner at low p_T MUSIC slightly underestimates the data

Baryonic Resonance : <pr>

The $\langle p_T \rangle$ values increase from peripheral to central collisions (~47% higher)

Higher than Pb-Pb @ 2.76 TeV values and Blast-wave model predictions $(\pi/K/p)$

MUSIC and EPOS3 models give better predictions with hadronic phase modelling (SMASH and UrQMD).

Baryonic Resonance : $\Lambda(1520)/\Lambda$

Baryonic Resonance : $\Lambda(1520)/\Lambda$

The $\Lambda(1520)/\Lambda$ yield ratio is suppressed in central collisions

MUSIC with SMASH afterburner reproduces the multiplicity suppression trend,

Thermal models do not reproduce the suppression trend.

 $\Lambda(1520)/\Lambda$ and $\Sigma^{*\pm}/\pi^{\pm}$

The $\Lambda(1520)/\Lambda$ yield ratio is suppressed in central collisions

MUSIC with SMASH afterburner reproduces the multiplicity suppression trend,

Thermal models do not reproduce the suppression trend.

 $\Lambda(1520)/\Lambda$ and $\Sigma^{*\pm}/\pi^{\pm}$

The $\Lambda(1520)/\Lambda$ yield ratio is suppressed in central collisions

MUSIC with SMASH afterburner reproduces the multiplicity suppression trend,

Thermal models do not reproduce the suppression trend.

EPOS3 with UrQMD afterburner overestimates the data.

Summary Hadronic resonances are valuable probes to study the properties of

hadronic phase in heavy ion experiments

- Suppression of short-lived resonances in large collision systems - dominance of re-scattering over regeneration
- no suppression observed for the longer-lived resonances

There is lot of excitement for resonance studies in small systems and exotic sector.

Global Spin Alignment

244-248, (2023) Nature 614,

Global Spin Alignment

(2023) 244-248, 614 Nature

Nuclear

 $\frac{dN}{d(\cos\theta^*)} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*$

$\rho_{00} = 1/3$: no spin alignment

$\rho_{00} \neq 1/3$: possible signature of spin alignment

Global Spin Alignment

(2020) 012301 125, Rev. Lett. Phys.

(2023) 244-248, 614, Nature

