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The EIC is a unique project, the only approved facility for the ultimate understanding of QCD
Most likely, the only novel high-energy collider in the next 15-20 years
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« Origin of Spin and Inner Structure

— How to generate nucleon properties by the parton dynamics, particularly gluon?
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Origin of Spin and Inner Structure

— How to generate nucleon properties by the parton dynamics, particularly gluon?
Origin of Nucleon Mass

— How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?
Nuclei Structure

— What is the source of the parton dynamics differences between inside nuclear and free nucleon?
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New QCD Matter
DS = T2,
Origin of Spin and Inner Structure

— How to generate nucleon properties by the parton dynamics, particularly gluon?
« Origin of Nucleon Mass
* Nuclei Structure

New State of QCD Matter

— How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?
— What is the source of the parton dynamics differences between inside nuclear and free nucleon?

— Isthere CGC? Under what conditions? What properties?
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In a word, to reveal gluon role in the universe
Nuclei Structure

New State of QCD Matter

— How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?

— What is the source of the parton dynamics differences between inside nuclear and free nucleon?
— Isthere CGC? Under what conditions? What properties?
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— Wigner function is the generating function, W (x, br, kt) that is impossible to determine bt and kt at the same time

« The transverse spatial distributions of quarks and gluons are known as the Generalized Parton Distribution
functions (GPDs)
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Origin of Spin and Inner Structure

ing of parton distribution in spatial and momentum space is the ultimate goal of the EIC

that is impossible to determine bt and kr at the same time

uons are known as the Generalized Parton Distribution

« The full understanc
— Wigner function is the generating function, W (x, br, k)
« The transverse spatial distributions of quarks and g

functions (GPDs)
The transverse-momentum-dependent parton distribution function (TMDs) encodes information on how the

momentum of partons is correlated with the nucleon spin
— Using polarized beams is very important!
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Origin of Nucleon Mass

* Nucleon mass is not just a sum of the mass of the constituent quarks
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Origin of Nucleon Mass

* Nucleon mass is not just a sum of the mass of the constituent quarks

— The contribution from the constituent quark mass is just 9% w/ xSDB

e The contribution from gluon (m=0 GeV/c2) is more than 50%!

— Trace anomaly induced by gluon condensate can not be negligible but not measured precisely

« Quarkonium threshold production can access the trace anomaly component directly

— This is an exclusive process that has only a scattered electron, a scattered undestroyed proton, and quarkonium
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Structure of Nuclei
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« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
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Structure of Nuclei
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« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

« EIC can access the gluon distribution at the small-x regions directly

LHC-AA RHIC-AA
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Structure of Nuclei

« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

« EIC can access the gluon distribution at the small-x regions directly

— Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically
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Structure of Nuclei

« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

« EIC can access the gluon distribution at the small-x regions directly

— Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically

« The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics
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Structure of Nuclei

« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
« EIC can access the gluon distribution at the small-x regions directly
— Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically

« The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics

— EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter
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Structure of Nuclei
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« The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

« EIC can access the gluon distribution at the small-x regions directly

— Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically

« The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics

— EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter

Under what conditions? What properties?
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The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

EIC can access the gluon distribution at the small-x regions directly

Structure of Nuclei

— Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically

The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics

— EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter

— No smoking gun! Global analysis combining multiple measurements is necessary
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The
ePIC detector at EIC
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The ePIC detector at EIC

n=0
-
— New 1.7 T SC solenoid, 2.8 m bore diameter I - —

« Tracking
— SiVertec Tracker MAPS wafer-level stiched sensor (ALICE ITS3)
— SiTracker MAPS barrel and disks
— MPGDs (uURWELL, MMG) cylindrical and planr

 Particle Identification
— high-performance DIRC

— dual RICH (aerogel + gas) (forward)
— proximity focusing RICH (backward)
— AC-LGAD TOF (barrel + forward)

« EM Calorimetry

— Imaging EMCal (Barrel)
— W-powder/SciFi (Forward)
— PbWO4 crystal (backward)

« Hadron Calorimetry

— FeSc (Barrel, reused from sPHENIX)
— Steel/Scint - W/Scint (backward/tforward)




The ePIC detector at EIC
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The ePIC detector at EIC

Jet kinematics LFHCal energy reso. Scattered electron e-going E reso.
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Future of EIC and HIC

« Although many experiments have provided much insight into quark dynamics in the nucleon, there is still
much that is unknown about gluon dynamics

« EIC can achieve an understanding of the gluon role in generating the nucleon/nuclei properties

« The preparation of EIC and the ePIC detector is ongoing, and the data-taking is expected to begin in 2034

— Official support from several countries' governments has been decided

« EIC and HIC are complementary relationships each other to understand QCD
— EIC advances the understanding of QCD by precision measurement

— HIC advances the understanding of QCD by creating extreme conditions and exploring new conditions

Despite different methods, both are evolving toward the same goal of further understanding QCD
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« Electron-lon Collider (EIC) is the next-generation epoch-making accelerator to explore the
quark-gluon structure of matter to be built at BNL

— Recommended as the highest priority for facility construction by the Nuclear Science Advisory Committee

« The main goal is to gain further understanding of Quantum Chromodynamics (QCD), especially
new insights into gluon dynamics

— Variable collision energies & wide acceptance detector to cover wide kinematic range (x, Q2)

— High luminosity to enhance rare probe statistics (heavy flavor hadrons have sensitivity to gluons)

* EIC provides complementary information to Heavy lon Collision (HIC)

— The strength of Deep Inelastic Scatterings (DIS) lies in their precision!



Observable and Detector Requirements

p/A beam . electron beam

The detector must be encapsulated to detect all particles
— Barrel, forward, and far-forward regions are covered by tracking, PID,

calorimetry
— Detection of the scattered (undestroyed) proton is crucial for the EIC

Scattered electron identification and an excellent energy
2.0
Electrons

Hadrons

Detecto

resolution system must be installed
— Tracking + EM Calorimetry

X (m)

Heavy flavor hadron tagging detectors are essential for

measuring gluon-participated events
— \Vertex + Tracking + Particle identification .
— The HERA experiments didn't have PID detectors -0 -2 0

20 40
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The range in x v.s. Q2 accesible with EIC

Current polarized DIS ep data:

o CERN ADESY ¢ JLab-6 O SLAC

Current polarized RHIC pp data:
e PHENIX =’ 4 STAR 1-jet v W bosons

......... [ S T D ol S i RSO ATl SHNI T A I o Kl S SENCECICINCN Rl R N IR S P N R sy

JLab-12

‘ (>
o“%ggg.%
el n Sl

%

= Measurements with A =56 (Fe):

— e eA/nADIS (E-139, E-665, EMC, NMC)

B JLAB-12

— ®  yADIS (CCFR, CDHSW, CHORUS, NuTeV)
- o DY (E772, E866)

— I DY (E906)

—— e e e o - - - - I e nl

107 103

X

405 104 1073 102

X

- - - -
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Energy-Momentum Tensor (EMT)

* Energy-Momentum TensorEI\/IT Contalnssevera\klnematlc information

« Mass is encoded in QCD e
(P| [d*xT%(x) | P)

(P|P)
« EMT contains the distribution of mass, orbital angular momentum and pressure

=E, +E,+ 1, + T,

Energy density Quark Gluon
01 7702 703 Vo T N
T T T2 T - T”” X T””

10
I Shear stress
Total EMT satisfies the conservation low

TZO 1 T
30 3 U —
T Normal stress a T,m/ — O

Momentum flux

" =
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« The scale invariance is broken at the quantum level in QCD
— In a nutshell, the scale invariance broken is induced by the non-zero vacuum energy

_ 2
(P|T*|P) =2M

» The trace can be decomposed into quark and gluon term
— Gluon term and quark term come from gluon condensate and quark condensate

Quark condensate g, Gluon condensate

U — e o ]
Tﬂ = My y + '-

."'_ =l

: '.,,'....‘c_ ‘ .o_.".,' :
D ) - o . gl

« The total trace anomaly is the renormalization scheme/scale invariant

— Each component is the renormalization scheme/scale dependent (Y. Hatta, A. Rajan and K. Tanaka, JHEP 12, 008
(2018) )

— This decomposition implies that in the chiral limit entire hadron mass from gluons!



Gravitational Form Factors (GFFs) are encoded into EM

EMT of spin-1/2 particle can be decomposed into several tensors (tensor decomposition) with

variables P = (p'+p)/2, A=(p' —p)2, t=A?
P P

iP,0,,A" AA, - g, A

- D () ———= ImC_'a(t)gW

(NGO [T IN()) = (p) | A (0 7,0

Each factor has meaning as a physics variable
A(?) : Momentum fraction
} Twist-2

J(®) : Jisum rule (spin)

(R Traco oo ] Twist-4

2m

dm

u(p’)

Sov. Phys. JETP 16, 1343 (1963)

he factors, A(?), J(t), D(t) and C(t), are called the GFFs similar to F; and F5 in the EM form factor

Twist- N term |s suppressed by 1/C2'\I _ o




* The gamma exchange between electron and proton is used to extract FFs, F1 and F2

* Interaction via graviton between electron and proton should be used to measure EMT
— The strength of the interaction is 10-37 times weaker than the EM interaction

* Mimic the gravitational interaction by gamma or gluon interactions
— Mathematically 2 gluons or 2 gammas exchange in a process can access EMT  Phys.Rev.D55:7114-7125,1997

DVCS

AN AN AN

uark term




