Satoshi Yano (Hiroshima University)

10th Asian Triangle Heavy-Ion Conference - ATHIC 2025 Jun. 13-16 2025

Physics Opportunity at EIC

Introduction

BNL is selected as the host

• Highly polarized beams: 70%

BNL is selected as the host

• Highly polarized beams: 70%

BNL is selected as the host **Facility performance** map

- Highly polarized beams: 70%
- - $10^{33} 10^{34}$ cm⁻²s⁻¹

BNL is selected as the host **Facility performance** Map

High luminosity: x100-1000 HERA

- Highly polarized beams: 70%
- High luminosity: x100-1000 HERA
	- $10^{33} 10^{34}$ cm⁻²s⁻¹
- Variable √s: HERA was 318GeV
	- $29 140 GeV$

BNL is selected as the host **Facility performance** Map

BNL is selected as the host **Facility performance** Map

BNL is selected as the host **Facility performance** Map

The EIC is a unique project, the only approved facility for the ultimate understanding of QCD Most likely, the only novel high-energy collider in the next 15-20 years

Origin of Spin and Inner Structure

• **Origin of Spin and Inner Structure**

– How to generate nucleon properties by the parton dynamics, particularly gluon?

Origin of Mass

- **Origin of Spin and Inner Structure**
	- How to generate nucleon properties by the parton dynamics, particularly gluon?
- **Origin of Nucleon Mass**
	- How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?

Origin of Spin and Inner Structure

Origin of Mass Nuclei Structure

- **Origin of Spin and Inner Structure**
	- How to generate nucleon properties by the parton dynamics, particularly gluon?
- **Origin of Nucleon Mass**
	- How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?
- **Nuclei Structure**
	- What is the source of the parton dynamics differences between inside nuclear and free nucleon?

Origin of Spin and Inner Structure

Origin of Spin and Inner Structure Crigin of Mass Auclei Structure

- **Origin of Spin and Inner Structure**
	- How to generate nucleon properties by the parton dynamics, particularly gluon?
- **Origin of Nucleon Mass**
	- How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?
- **Nuclei Structure**
	- What is the source of the parton dynamics differences between inside nuclear and free nucleon?
- **New State of QCD Matter**
	- Is there CGC? Under what conditions? What properties?

• **Origin of Spin and Inner Structure** In a word, to reveal gluon role in the universe!

• **Origin of Nucleon Mass**

– How much is the contribution from gluons, particularly "Trace anomaly" induced by gluon condensate?

• **Nuclei Structure**

- What is the source of the parton dynamics differences between inside nuclear and free nucleon?
- **New State of QCD Matter**
	- Is there CGC? Under what conditions? What properties?

Selected Physics Highlight

Origin of Spin and Inner Structure

• The full understanding of parton distribution in spatial and momentum space is the ultimate goal of the EIC – Wigner function is the generating function, $W(x, b_T, k_T)$ that is impossible to determine b_T and k_T at the same time

- -

• The full understanding of parton distribution in spatial and momentum space is the ultimate goal of the EIC Wigner function is the generating function, $W(x, b_T, k_T)$ that is impossible to determine b_T and k_T at the same time • The transverse spatial distributions of quarks and gluons are known as the Generalized Parton Distribution

 $W(x, b_T, k_T)$

- -
- functions (GPDs)

6

GPDs (spatial distribution)

Origin of Spin and Inner Structure

• The full understanding of parton distribution in spatial and momentum space is the ultimate goal of the EIC Wigner function is the generating function, $W(x, b_T, k_T)$ that is impossible to determine b_T and k_T at the same time • The transverse spatial distributions of quarks and gluons are known as the Generalized Parton Distribution

• The transverse-momentum-dependent parton distribution function (TMDs) encodes information on how the

from SIDIS pion sidis pion and kaon EIC pseudo-data, at the scale of 2 GeV. The orange-shaded areas represent the current uncertainty, while the blue-shaded areas are the blue-shaded are the blue-shaded are the blue-shade

- -
- functions (GPDs)
- momentum of partons is correlated with the nucleon spin
	- Using polarized beams is very important!

Origin of Spin and Inner Structure

• Nucleon mass is not just a sum of the mass of the constituent quarks

7

- Nucleon mass is not just a sum of the mass of the constituent quarks
	- The contribution from the constituent quark mass is just 9% w/ χSDB

7

- Nucleon mass is not just a sum of the mass of the constituent quarks – The contribution from the constituent quark mass is just 9% w/ χSDB
- The contribution from gluon (m=0 GeV/c²) is more than 50%!

- Nucleon mass is not just a sum of the mass of the constituent quarks – The contribution from the constituent quark mass is just 9% w/ χSDB
- The contribution from gluon (m=0 GeV/c²) is more than 50%!
	- Trace anomaly induced by gluon condensate can not be negligible but not measured precisely

7

- Nucleon mass is not just a sum of the mass of the constituent quarks – The contribution from the constituent quark mass is just 9% w/ χSDB
- The contribution from gluon (m=0 GeV/c²) is more than 50%! – Trace anomaly induced by gluon condensate can not be negligible but not measured precisely
- Quarkonium threshold production can access the trace anomaly component directly **Promising Process for Gluon GFFs Measurement**

7

- Nucleon mass is not just a sum of the mass of the constituent quarks – The contribution from the constituent quark mass is just 9% w/ χSDB
- The contribution from gluon (m=0 GeV/c²) is more than 50%! – Trace anomaly induced by gluon condensate can not be negligible but not measured precisely
- Quarkonium threshold production can access the trace anomaly component directly
- This is an exclusive process that has only a scattered electron, a scattered **undestroyed** proton, and quarkonium **Promising Process for Gluon GFFs Measurement**

7

Origin of Nucleon N

- Nucleon mass is not just a sum of the mass of the constituent quarks – The contribution from the constituent quark mass is just 9% w/ χSDB
- The contribution from gluon (m=0 GeV/c²) is more than 50%! Trace anomaly induced by gluon condensate can not be negligible but not measured precisely
- Quarkonium threshold production can access the trace anomaly component directly Figure 14: Trace anomaly contribution as a function of p center of mass energy
- This is an exclusive process that has only a scattered electron, a scattered **undestroyed** proton, and quarkonium **Promising Process for Gluon GFFs Measurement**

0.4 $\mathsf{M}_{\mathsf{a}}\mathsf{M}_{\mathsf{p}}$ **ep** \rightarrow **eJ/** ψ **p 4**< **W**_{γ} **c** 5 GeV
 L_{int} = 100 fb⁻¹ γ Q

en 19 Million HQQ 0.35 0.3 $\overline{\mathbf{P}}$ \blacktriangleright \blacktriangleright 0.25 *Tμν* 0.2 *g* **o** GlueX P P' • Projection 5x41 GeV 0.15 t 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.1

• The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region • EIC can access the gluon distribution at the small-x regions directly
-

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
- EIC can access the gluon distribution at the small-x regions directly
	- Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
- EIC can access the gluon distribution at the small-x regions directly – Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically
- The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
- EIC can access the gluon distribution at the small-x regions directly – Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically
- The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics
	- EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
- EIC can access the gluon distribution at the small-x regions directly – Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically
- The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics
	- EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter

- The gluon distribution in the nucleus still has large uncertainties at the LHC and RHIC region
- EIC can access the gluon distribution at the small-x regions directly - Thanks to enough energy and large luminosity, uncertainty can be reduced dramatically
- The study of emergent properties of the ultra-dense gluonic matter is an important pillar of EIC physics In QCD, the large soft-gluon density enaent properties of the n recombination to limit the density growth. balance. At this scale, the density of gluons of gluons of gluons \mathcal{A} iltra-dense gluonic ma universal properties of hadronic matter. The
	- EIC covers a wide range of kinematic areas, across the region emerging the gluonic matter ange or kinematic areas, a saturation scale *Q^s* separates the condensed and saturated in direction the solution of the
- No smoking gun! Global analysis combining multiple measurements is necessary ⁴⁶ 150 *7.3. The nucleus of the state of the laboratory for the code of the code of the state o* known as the saturation scale, *Qs*, at which dilute, but confined, quarks and gluons in a state of the gluons in a st multiple measurement

Experiment

– New 1.7 T SC solenoid, 2.8 m bore diameter

• **Tracking**

- Si Vertec Tracker MAPS wafer-level stiched sensor (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- MPGDs (μRWELL, MMG) cylindrical and planr

- Imaging EMCal (Barrel)
- W-powder/SciFi (Forward)
- PbWO4 crystal (backward)

• **Particle Identification**

- high-performance DIRC
- dual RICH (aerogel + gas) (forward)
- proximity focusing RICH (backward)
- AC-LGAD TOF (barrel + forward)

• **EM Calorimetry**

• **Hadron Calorimetry**

- FeSc (Barrel, reused from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

– Steel/Scint - W/Scint (backward/forward) energies of 10x100 GeV (top row), 18x100 GeV (middle row), 18x100 GeV (bottom row), and 18x275 GeV (bottom row
The contract row), 18x100 GeV (bottom row), and 18x275 GeV (bottom row), and 18x275 GeV (bottom row), 18x275 G

11

• Although many experiments have provided much insight into quark dynamics in the nucleon, there is still

much that is unknown about gluon dynamics

• Although many experiments have provided much insight into quark dynamics in the nucleon, there is still

- much that is unknown about gluon dynamics
- EIC can achieve an understanding of the gluon role in generating the nucleon/nuclei properties

• Although many experiments have provided much insight into quark dynamics in the nucleon, there is still

- much that is unknown about gluon dynamics
- EIC can achieve an understanding of the gluon role in generating the nucleon/nuclei properties
- - Official support from several countries' governments has been decided

• The preparation of EIC and the ePIC detector is ongoing, and the data-taking is expected to begin in 2034

12

• Although many experiments have provided much insight into quark dynamics in the nucleon, there is still

• The preparation of EIC and the ePIC detector is ongoing, and the data-taking is expected to begin in 2034

- much that is unknown about gluon dynamics
- EIC can achieve an understanding of the gluon role in generating the nucleon/nuclei properties
- - Official support from several countries' governments has been decided
- EIC and HIC are complementary relationships each other to understand QCD
	- EIC advances the understanding of QCD by precision measurement
	- HIC advances the understanding of QCD by creating extreme conditions and exploring new conditions

12

• Although many experiments have provided much insight into quark dynamics in the nucleon, there is still

• The preparation of EIC and the ePIC detector is ongoing, and the data-taking is expected to begin in 2034

- much that is unknown about gluon dynamics
- EIC can achieve an understanding of the gluon role in generating the nucleon/nuclei properties
- - Official support from several countries' governments has been decided
- EIC and HIC are complementary relationships each other to understand QCD
	- EIC advances the understanding of QCD by precision measurement
	- HIC advances the understanding of QCD by creating extreme conditions and exploring new conditions

Despite different methods, both are evolving toward the same goal of further understanding QCD

Backup slides

Electron-Ion Collider

- Electron-Ion Collider (EIC) is the next-generation epoch-making accelerator to explore the quark-gluon structure of matter to be built at BNL
	- Recommended as the highest priority for facility construction by the Nuclear Science Advisory Committee
- The main goal is to gain further understanding of Quantum Chromodynamics (QCD), especially new insights into gluon dynamics
	- Variable collision energies & wide acceptance detector to cover wide kinematic range (x, Q2) – High luminosity to enhance rare probe statistics (heavy flavor hadrons have sensitivity to gluons)
	-
- EIC provides complementary information to Heavy Ion Collision (HIC) – The strength of Deep Inelastic Scatterings (DIS) lies in their precision!

Observable and Detector Requirements

- The detector must be encapsulated to detect all particles
	- Barrel, forward, and far-forward regions are covered by tracking, PID, calorimetry
	- Detection of the scattered (undestroyed) proton is crucial for the EIC
- Scattered electron identification and an excellent energy resolution system must be installed
	- Tracking + EM Calorimetry
- Heavy flavor hadron tagging detectors are essential for measuring gluon-participated events
	- Vertex + Tracking + Particle identification
	- The HERA experiments didn't have PID detectors

The range in x v.s. Q2 accesible with EIC

Energy-Momentum Tensor (EMT)

- Mass is encoded in QCD EMT $M =$ $\langle P | \int d^3x T^{00}(x) | P \rangle$
- EMT contains the distribution of mass, orbital angular momentum and pressure $\langle P|P\rangle$

• Energy-Momentum Tensor (EMT) contains several kinematic information

$$
\frac{|P\rangle}{\frac{}{}=E_q+E_g+\chi_{m_q}+T_a}
$$

lensity

Energy density **Momentum d**
\n
$$
T^{\mu\nu} = \begin{bmatrix}\nT^{00} & T^{01} & T^{02} & T^{03} \\
T^{10} & T^{11} & T^{12} & T^{13} \\
T^{20} & T^{21} & T^{22} & T^{23} \\
T^{30} & T^{31} & T^{32} & T^{33} \\
T^{\mu\nu} & \text{Momentum flux} \end{bmatrix}
$$
\nEnergy flux **Momentum flux**

Shear stress

Normal stress

$$
T^{\mu\nu} = T_q^{\mu\nu} + T_g^{\mu\nu}
$$

Total EMT satisfies the conservation low

$$
\partial^{\mu}T_{\mu\nu}=0
$$

$$
T^{\mu\nu} = i \bar{\psi} \gamma^{(\mu} D^{\nu)} \psi + \frac{\eta^{\mu\nu}}{4} F^2 - F^{\mu\lambda} F^{\nu}_{\lambda}
$$

17

Trace Anomaly in QCD

- The scale invariance is broken at the quantum level in QCD
	- In a nutshell, the scale invariance broken is induced by the non-zero vacuum energy

 $\langle P | T^{\mu}_{\mu} | P \rangle = 2M^2$

• The trace can be decomposed into quark and gluon term – Gluon term and quark term come from gluon condensate and quark condensate

2*g Fμν Fμν* **Quark condensate Gluon condensate**

- The total trace anomaly is the renormalization scheme/scale invariant
	- Each component is the renormalization scheme/scale dependent (Y. Hatta, A. Rajan and K. Tanaka, JHEP 12, 008 (2018))
	- This decomposition implies that in the chiral limit entire hadron mass from gluons!

$$
T^{\mu}_{\mu} = m\overline{\psi}\psi + \boxed{m\gamma_m\overline{\psi}\psi} + \frac{\beta(g)}{2g}\boxed{F^{\mu}}
$$

$$
T^{\mu}_{q\mu}
$$

$$
M = E_q + E_g + \chi_m
$$

gμ

17

• EMT of spin-1/2 particle can be decomposed into several tensors (tensor decomposition) with

Gravitational Form Factor (GFF)

- Gravitational Form Factors (GFFs) are encoded into EMT
- variables $P = (p'+p)/2$, $\Delta = (p'-p)/2$, $t = \Delta^2$ $\langle N(p') | T^{\mu\nu} | N(p) \rangle = \bar{u}(p') | A_a(t)$ *PμP^ν m* $+ J_a(t)$
- The factors, $A(t)$, $J(t)$, $D(t)$ and $\bar{C}(t)$, are called the GFFs similar to F₁ and F₂ in the EM form factor
- Each factor has meaning as a physics variable *A*(*t*) : Momentum fraction *J*(*t*) : Ji sum rule (spin) *D*(*t*) : Pressure $\bar{C}(t)$: Trace anomaly {**Twist-2 Twist-4 }**

$$
\frac{iP_{(\mu}\sigma_{\nu)\rho}\Delta^{\rho}}{2m} + D_a(t)\frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{4m} + m\bar{C}_a(t)g_{\mu\nu}\Big]u(p')
$$

sov. Phys. JETP 16, 13
and the GFFs similar to F₁ and F₂ in the EM form fa

How to Access the Trace Anomaly Term $\bar{C}(t)$ **?**

- The gamma exchange between electron and proton is used to extract FFs, F1 and F2
- Interaction via graviton between electron and proton should be used to measure EMT The strength of the interaction is 10-37 times weaker than the EM interaction
- Mimic the gravitational interaction by gamma or gluon interactions – Mathematically 2 gluons or 2 gammas exchange in a process can access EMT

Phys.Rev.D55:7114-7125,1997