Probing the Quark Gluon Plasma : Photons and Dileptons as Messengers

Roli Esha

Center for Frontiers in Nuclear Science Stony Brook University

Electromagnetic radiations

All object emit electromagnetic radiations, characterized by their temperature

Electromagnetic radiations in A+A collisions

Microscopic processes for photon production

Photons are "color blind" probe of Quark Gluon Plasma

Measurement of yield constrains initial conditions, sources, emission rates and space-time evolution

Thermal radiations from A+A collisions

ATHIC 2025

Universal behavior

Universality suggests common source of photon production independent of collision energy

Non-prompt direct photons

Roli Esha

ATHIC 2025

Non-prompt direct photons

Increasing inverse slope with p_T **to above 350** MeV/*c* suggests contributions from sources beyond those from Hadron Gas

 α independent of p_T for direct and nonprompt photons

Azimuthal anisotropy

ELLIPTIC FLOW

Off-center collisions between gold nuclei produce an elliptical region of quarkgluon medium. Fragment of gold nucleus

Elliptical quarkgluon medium

The pressure gradients in the elliptical region cause it to explode outward, mostly in the plane of the collision (*arrows*).

Roli Esha

$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = N_0 \left(1 + 2v_2 \cos(2\varphi)\right)$

 v_2^{incl} of all the photons measured by the EMCal (measured from data) v^{dec} of all the photons coming from hadron decays (comes from cocktail)

$$v_2^{dir} = \frac{R_{\gamma} v_2^{incl} - v_2^{dec}}{R_{\gamma} - 1}$$

 R_{γ} of direct photons (measured from data)

ATHIC 2025

Azimuthal anisotropy

Azimuthal anisotropy

Direct Photon Puzzle

Multi-messenger heavy-ion physics

- Hybrid model that describes all stages of relativistic heavy-ion collisions
- Effect of the pre-equilibrium phase on both photonic and hadronic observables highlighted

Roli Esha

10

Dominant contribution from pre-equilibrium above 3 GeV/c in the model seems to align well with the data

Overall yield falls short, especially below 2 GeV/c

Describes flow at low p_T **but missed at high p**_T

Qualitative agreement with thermal source

Quantitative tension with model predictions

Dileptons as direct radiations

- Momentum Doppler shifted
- Mass Lorentz invariant

Roli Esha

7

ATHIC 2025

Dileptons as direct radiations

- Momentum Doppler shifted
- Mass Lorentz invariant
- In 1 < m_{ee} < 3 GeV, the only significant physics background is open heavy flavor

Roli Esha

7

Modifications due to medium interactions

ATHIC 2025

The cc correlation

ATHIC 2025

First attempt at measuring the dielectron correlation due to semileptonic decay of charm at RHIC

The cc correlation

First attempt at measuring the dielectron correlation due to semileptonic decay of charm at RHIC

Thermal dileptons from BES

Phys. Rev. C 107, L061901 (2023)

Roli Esha

Thermal dileptons from p+p at 13 TeV

Hard Probes 2024

Increased statistics by a factor of ~ 4 as compared to previous result MB well described by hadronic sources Within uncertainties no sign of thermal radiation in HM events

Roli Esha

ATHIC 2025

Thermal dileptons from p+p at 13 TeV

Hard Probes 2024

MB can be reproduced by both prompt only or prompt + thermal radiation Significant increase of direct-photon yield in HM collisions compared to MB collisions

ATHIC 2025

Thermal dileptons from Pb+Pb at 5.02 TeV

arXiv:2308.16704

Topological separation technique is used which is independent of hadronic cocktail Results consistent with charm suppression and thermal contribution in IMR ATHIC 2025

High pr direct photons

20% suppression at high p_T with a 4.5 σ significance in 0-5% central d+Au collisions at 200 GeV

Ongoing efforts to establish with p+Au and ³He+Au

Roli Esha

Summary

- Plethora of exciting new measurements with different methods for different systems and collision energies
- Direct photon puzzle still stands at RHIC
- Experimental measure of hard scattering
- Direct photons still have a lot to offer!

Thank you for your attention!

ATHIC 2025

Comparing PHENIX and STAR

• PHENIX data is consistent among several measurements using different techniques • STAR data is significantly lower

The discrepancy is not yet resolved

ATHIC 2025

Direct photon puzzle

Roli Esha

- Large contribution from hadron gas and QGP
 - Thermal rates with hydro (viscous/non viscous) or blastwave evolution
 - Microscopic transport (PHSD)
- Early contributions
 - Non-equilibrium effects (glasma, etc.)
 - Enhanced thermal emission in large B-fields
 - Modified formation time and initial conditions
- Effects at phase boundary
 - Extended emission
 - Emission at hadronization

Qualitative agreement with thermal source Quantitative tension with model predictions

