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Heavy flavor in heavy-ion collisions

® Heavy-flavor quarks are mostly produced at the very
early stage of the collision

® They traverse the medium while interacting with it
® They explore every stage of the medium evolution

MADAI Collaboration, H Petersen, J Bernhard
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The random walk of charm

® The propagation of charm quarks can be considered a random walk
® |n the hydrodynamic phase, it can be described in a Fokker Planck or Langevin
approach
dp; = —Apidt + &(p)dt
® The physical parameters are the drag and diffusion coefficients

® The diffusion coefficient is related to fluctuation by the fluctuation-dissipation
theorem,

(€i(Dg(t)) = Boyo(t — 1)
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Target areas in charm phenomenology

¢ | find the EMMI task force report from 2018 a good guide for next steps

Extraction of Heavy-Flavor Transport Coefficients in QCD Matter

R. Rapp*!, P.B. Gossiaux*?, A. Andronic***, R. Averbeck*®, S. Masciocchi*®, A. Beraudo®,
E. Bratkovskaya®S, P. Braun-Munzinger®”, S. Cao®, A. Dainese’, S.K. Das'®!!,
M. Djordjevic'?, V. Greco!™3, M. He'®, H. van Hees®, G. Inghirami®%1516 0. Kaczmarek'"-'8,
Y.-J. Lee'?, J. Liao®, S.Y.F. Liu', G. Moore?!, M. Nahrgang?, J. Pawlowski??, P. Petreczky?3,
S. Plumari'!, F. Prino®, S. Shi®**, T. Song?, J. Stachel’, I. Vitev®, and X.-N. Wang?®!8

Nucl. Phys. A 979 (2018)
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Target areas in charm phenomenology

¢ The task-force made clear recommendations for modeling

1. Adopt FONLL baseline HQ spectra with EPS09 shadowing for the initial conditions in transport

simulations.

2. Employ publicly available hydrodynamic or transport evolution models which have been tuned
to data, with a maximal range of viable initial conditions and model parameters; or even a single

one with a pre-specified tune as a single point of contact of all approaches.

3. Use recombination schemes of heavy quarks with light medium partons which satisfy 4-
momentum conservation and recover equilibrium distributions in the long-time limit for the

resulting hadron distributions.

4. Incorporate nonperturbative interactions in the modeling of heavy-flavor transport in a QGP
at moderate temperatures as established and constrained by information from lattice QCD;
utilize resummed interactions leading to bound-state formation near 7. to facilitate a seamless

transition into coalescence processes.

Syl

. Include diffusion through the hadronic phase of heavy-ion collisions.
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Hydrodynamic background

2. Employ publicly available hydrodynamic or transport evolution models which have been tuned
to data, with a maximal range of viable initial conditions and model parameters; or even a single

one with a pre-specified tune as a single point of contact of all approaches.

® Important to have realistic background tuned to soft data

® Helps mimic experimental procedure of taking correlations with charged
hadrons

® Hydro codes in public domain, not expensive
® Modular frameworks like JETSCAPE/X-SCAPE make it easier to adapt

® Push towards publicly available emulators
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Importance of using realistic backgrounds

® Background space-time profile is sensitive to
initial conditions

® Hotspots where more binary collisions took

place forming HF quarks are distributed
. Event by Event Hydro 0-10% =
d|ffe renﬂy 2 \ Averaged Hydro 0-10% &=
Event by Event Hydro 30-50% &=
. . A d Hydro 30-50%
® Experiments correlate HF event-plane with 15 veregedvere
<
charged hadron event-plane =
Pb-Pb@ 2.76 TeV
0.5
4 4 0
2 : T et ¢
& & M. Singh, M. Kurian, S. Jeon, C. Gale, Phys.Rev.C
’ ’ 2023
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Mapping spatial QGP profile

® Degeneracy in charged hadron data, cannot resolve space-time evolution
e With realistic background models, HF observables can help constrain both HF
and LF evolution
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D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic, Front.Phys. 2022

Talk by Bithika Karmakar, Wed
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Pre-hydro evolution

® Pre-hydro interactions of heavy-flavor quarks were initially neglected
® Short pre-hydro time (0.5~1fm) compared to hydro time ( 10 fm)
® However, interaction strength is much larger for gluons than for QGP
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S. K. Das, M. Ruggieri, S. Mazumder, V. Greco, and J.-e Alam, J.Phys.G (2015)
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Glasma vs Kinetic theory approaches
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® The charm energy loss in pre-hydro phase can N< \ e
be described in glasma or in QCD kinetic % L@ —F Lattice
theory approaches [GRe ‘
. . . . 'S
® For smooth matching of different regimes in

~ 1
soft sector, we often do Glasma — KT — Hydro 0.0 = =

K. Boguslavski, A. Kurkela, T. Lappi, F.
Lindenbauer, J. Peuron, PRD 2024
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Does pre-hydro phase matter for charm

observables?

Suppression in Ry
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S. K. Das, M. Ruggieri, F. Scardina, S.

Plumari and V. Greco, J.Phys.G 2017
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Momentum broadening by
Wong’s equation in infinitely
large expanding Glasma

-~ charm quarks
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D. Avramescu, V. Greco, T. Lappi, H.
Mantysaari, D. Muller, arXiv:2409.10564
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Momentum broadening in
static plasma with NR Dirac
equations
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Pooja, S. K. Das, M. Ruggieri, V. Greco,
EurPhys.J.Plus, 2023
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Does pre-hydro phase matter for charm

observables?

® Broadening also observed from
ab-initio calculations studying
interactions of relativistic
heavy-quarks with overpopulated
non-Abelian plasma

Talk by Harshit Pandey, Wed

Vanderbilt University
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H. Pandey, S. Schlichting, S. Sharma, Phys.Rev.Lett. 2024
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Consistent IP-Glasma + Hydro framework for charm

Heavy Quark E
(HQ): i

Brownian motion of HQ Fragmentation + Coalescence Mechanisms
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HQ event generation: MARTINI ‘a’ A4
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Diffusion rates from lattice

® Recent lattice results provide spatial W N, —241QCD e R
diffusion coefficient in 2+1 flavor QCD ol Ny =0QCD & i
ALICE »¢
HotQCD, PRL (2023) ]
e We used 0 flavor results in the Glasma 0r & Bayesian g
phase N. Brambilla, V. Leino, P. Petreczky, A. Vairo, S 8 4
Phys.Rev.D 2023; L. Altenkort, A. M. Eller, O. t = T
Kaczmarek, L. Mazur, G. D. Moore, H.-T. Shu, o6y - T . 7
Phys.Rev.D 2021; D. Banerjee, R. Gavai, S. Datta, P. 4L ] % % T-—I.namii
Majumdar, NuclPhys.A 2023 X } - }‘ “pert. NLO/
® |nteraction strength larger than 2T l 8 ¢ * AdS/CFT ]
previously thought 0 1 1‘2 1‘4 1‘6 1‘8 2 2‘2 2‘4 2.6
® Momentum dependence inspired by S T/fc S
pQCD calculations HotQCD, PRL (2023)
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Consistent IP-Glasma + Hydro framework for charm

® Pre-hydro diffusion can significantly enhance prleading to a larger Raqx
® Not tuned to data

Preliminary
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Hydrodynamized quarks

F. Capellino, A. Beraudo, A. Dubla, S. Floerchinger, S. Masciocchi, J. Pawlowski, I. Selyuzhenkov, Phys. Rev. D, 2023
® Aninteresting new idea to treat charm as a conserved current
® Formed initially, low in-medium annihilation rates

® Heavy quark and anti-quark currents are conserved independently

® Conservation equation

124 3.4 <2nD,T, < 5.4 (IQCD 2021)
1.5 < 2nD,T, < 4.5 (fits to data)
N~ = nyaut +vF ]
0/0 0/0 + /0 — ] Charm quarks
1S
N = Q. =]
O 0/0 0 =
o
® Thermalization is assumed ]
® Transverse expansion dominates late o=

2 4 6 8
times Longitudinal proper time [fm]
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Effect of magnetic fields
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S. K. Das, S. Plumari, S. Chatterjee, J.-e Alam, F.
Scardina, V. Greco, Phys.Lett.B 2017

Vanderbilt University Mayank Singh 17/21



Recombination models

3. Use recombination schemes of heavy quarks with light medium partons which satisfy 4-

momentum conservation and recover equilibrium distributions in the long-time limit for the

resulting hadron distributions.

e Hadronization by fragmentation + recombination

e Models differ in details

PHYSICAL REVIEW C 109, 054912 (2024)

Hadronization of heavy quarks

Jiaxing Zhao©,' Jorg Aichelin,' Pol Bemard Gossiaux,' Andrea Beraudo®,” Shanshan Cao,® Wenkai Fan,* Min He.’
Vincenzo Minissale ®,%7 Taesoo Song .® Ivan Vitev ®.” Ralf Rapp,'® Steffen Bass©,* Elena Bratkovskaya,®!1:1?
7

Vincenzo Greco®,%” and Salvatore Plumari ®°
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Hadronic diffusion

5. Include diffusion through the hadronic phase of heavy-ion collisions.

e HF flavor hadrons do not cease interactions in % , : : :
hadronic phase 3t  Notos et i
Ozvenchuk et al.
30F —— Torres-Rincon et al.

¢ While medium density is lower, flow is high

e Hadronic interactions expected to enhance vy E 200
. . . r- 15
® R4 is not significantly affected of
e HF interaction strength with hadronic gas g3
evaluated using EFTs f a—T 01 T(Gg.\'})z (X R ¥ T3
. S. K. Das, J. M. Torres-Rincon, R. Rapp,
Talk by Kangkan Goswami, Wed arxiv:2406.13286
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Hadronic diffusion
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S. Cao, G.-Y. Qin, and S. A. Bass,
Phys.Rev.C 2015

S. K. Das, J. M. Torres-Rincon, L.
Tolos, V. Minissale, F. Scardina, and
V. Greco, Phys.Rev.D 2016

Figures from S. K. Das, J. M.
Torres-Rincon, R. Rapp,
arxiv:2406.13286
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Outlook

® Exciting developments being made in heavy flavor phenomenology

® Pre-hydro regime seems to have significant effect on Ry

® Hadronic interactions enhance v,

® \We are entering era of simultaneous description of soft+hard observables

® Bayesian techniques can be leveraged to isolate tension between data and
models and to identify areas where we need to improve our understanding

THANK YOU!
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