Baryon number and strangeness number fluctuations at LHC energies

Sourav Kundu (for the ALICE Collaboration)

10th Asian Triangle Heavy-Ion Conference 13th to 16th January 2025

QCD phase diagram and phase structure

Lattice QCD calculations predict a crossover transition at LHC energies $\rightarrow \mu_{\rm B} \approx 0$ MeV

$$-T_{pc}^{LQCD} \approx T_{fo}^{ALICE} \approx 156.5 \pm 3 \text{ MeV}$$

A. Andronic et al., Nature 561 (2018) 321

- no experimental confirmation of crossover

 E-by-E fluctuations of net-conserved charges (eg. net-baryon number) provide valuable insights into the QCD phase structure

Link to lattice QCD: Cumulants of net-conserved charges

Link to lattice QCD: Cumulants of net-conserved charges

3

00

LQCD expectations at LHC:

1) Baseline: Difference between two independent Poissonian distributions (Skellam distr.) $\rightarrow \kappa_{\rm n}/\kappa_2$ is 0 (odd) or 1 (even)

2) Up to 3rd order Hadron Resonance Gas (HRG) model agrees with LQCD at $\mu_{\rm B} = 0$

3) Higher order \rightarrow larger deviation from baseline \rightarrow 4th order ~30%, 6th order ~150%

sourav.kundu@cern.ch

Required statistics for experimental measurements

- Cumulants are obtained from the multiplicity distribution of net-conserved charges
- Higher-order cumulants are sensitive to the tail of the distribution

 → required very high statistics (e.g. for 6th order ~ O(10⁹) events in central Pb–Pb collisions)
 → feasible by the end of LHC Run 3 and Run 4

Required statistics for experimental measurements

- Cumulants are obtained from the multiplicity distribution of net-conserved charges
- Higher-order cumulants are sensitive to the tail of the distribution

 → required very high statistics (e.g. for 6th order ~ O(10⁹) events in central Pb–Pb collisions)
 → feasible by the end of LHC Run 3 and Run 4

This talk focuses only on Run 2 results up to 2nd and 3rd order cumulants

2nd order cumulants of net-p

- Deviation from Skellam baseline due to local baryon number conservation
- HIJING overestimates the measurements \rightarrow string models conserve baryon number over smaller rapidity
- Measurement supports baryon number conservation over a large conservation volume 3 dV/dy in canonical ensemble (CE) based Thermal-FIST model equivalent to a correlation length of 3 units of rapidity → originates earlier in time

3rd order cumulants of net-p

• Data agree with Skellam baseline "0" as expected at LHC energies

• Models deviate from "0" due to different particle to anti-particle ratio than data and effect of multiplicity fluctuation in models

Probing strange hadron production with e-by-e fluctuation

- Enhanced production of strange hadrons in heavy-ion collisions compared to the elementary collisions, originally proposed as a signature of QGP
- Similar observation in high multiplicity pp collisions

Probing strange hadron production with e-by-e fluctuation

- Enhanced production of strange hadrons in heavy-ion collisions compared to the elementary collisions, originally proposed as a signature of QGP
- Similar observation in high multiplicity pp collisions
- To describe multiplicity evolution very different hadronization models are used: Thermal model: Statistical Hadronization Model (SHM) →effect of global conservation of strange quantum number

Probing strange hadron production with e-by-e fluctuation

- Enhanced production of strange hadrons in heavy-ion collisions compared to the elementary collisions, originally proposed as a signature of QGP
- Similar observation in high multiplicity pp collisions
- To describe multiplicity evolution very different hadronization models are used: Thermal model: Statistical Hadronization Model (SHM) →effect of global conservation of strange quantum number

Non-thermal string model: PYTHIA8 + color ropes \rightarrow hadrons formed from the breaking of color string/rope \rightarrow formation of baryon junction

Ratio of yields to $(\pi^++\pi^-)$

How to disentangle? Nature of strange quantum number conservation 9

- Canonical statistical hadronisation
 - Conservation over finite volume (V_c)
 - \rightarrow Long-range correlation length over rapidity
 - \rightarrow Both like- and unlike-sign correlations

- String fragmentation
 - Local conservation due to qq pair creation
 - \rightarrow Short range correlation length over rapidity
 - → Mostly unlike-sign correlations

How to disentangle? Nature of strange quantum number conservation 9

- Canonical statistical hadronisation
 - Conservation over finite volume (V_{c}) Ο
 - \rightarrow Long-range correlation length over rapidity
 - \rightarrow Both like- and unlike-sign correlations

Observables: cumulant ratios of the net-particles

String fragmentation

- Local conservation due to qq pair creation 0
 - \rightarrow Short-range correlation length over rapidity
 - → Mostly unlike-sign correlations

Cumulants		Net-particles
$\kappa_1 = \langle n \rangle$	Mean value	$\Delta \Xi = n_{\Xi^+} - n_{\Xi^-}$
$\kappa_2 = \langle (n - \langle n \rangle)^2 \rangle$	(Co)variance	$\Delta \mathbf{K} = n_{\mathbf{K}^+} - n_{\mathbf{K}^-}$
$\kappa_{11}(n,m) = \langle (n - \langle n \rangle)(m - \langle m \rangle) \rangle$		

$$\begin{aligned}
\kappa_{2}(\overline{\Xi}^{+} - \Xi^{-}) &= \kappa_{2}(\overline{\Xi}^{+}) + \kappa_{2}(\Xi^{-}) - 2\kappa_{11}(\overline{\Xi}^{+}, \Xi^{-}) \\
\rho_{\Delta\Xi\Delta K} &= \frac{\kappa_{11}(\Delta\Xi, \Delta K)}{\sqrt{\kappa_{2,\Delta\Xi}\kappa_{2,\Delta K}}} & \kappa_{11}(\Delta\Xi, \Delta K) = \kappa_{11}(\overline{\Xi}^{+}, K^{+}) + \kappa_{11}(\Xi^{-}, K^{-}) - \kappa_{11}(\overline{\Xi}^{+}, K^{-}) - \kappa_{11}(\Xi^{-}, K^{+}) \\
& same-sign & opposite-sign \\
& \text{Sourav Kundu, CERN} & sourav.kundu@cern.ch
\end{aligned}$$

ATHIC 2025

E-by-E fluctuation of multi-strange hadrons

- Significant correlation among strange hadrons due to strange quantum number conservation
- Thermal model SHM:
 - → described both the observables with a large conservation volume 3 dV/dy equivalent to a correlation length of 3 units of rapidity and has both the same and opposite sign correlation
- Non-thermal model PYTHIA:
 - $\rightarrow \kappa_2/\kappa_1$ is overestimated (larger deviation from independent baseline) due to short range rapidity correlation
 - $\rightarrow \rho$ is underestimated (smaller deviation from independent baseline) due to the absence of same-sign correlation

Comparison with Λ baryon

Net- $\Lambda \rightarrow V_c = 3 \text{ dV/dy}$ matches the measured fluctuations – Common volume parameter for different quantum-number content???

• Thermal production of proton and deuteron at freeze-out vs. late production of deuteron through coalescence

- Thermal production of proton and deuteron at freeze-out vs. late production of deuteron through coalescence
- Antideuteron-antiproton correlation has two possible sources of correlation:
 (1) anti-correlation due to baryon number conservation
 (2) anti-correlation due to coalescence

- Thermal production of proton and deuteron at freeze-out vs. late production of deuteron through coalescence
- Antideuteron-antiproton correlation has two possible sources of correlation:
 (1) anti-correlation due to baryon number conservation
 (2) anti-correlation due to coalescence

ALICE, Phys. Rev. Lett. 131, (2023) 041901

- Simple coalescence \rightarrow convolution of proton and neutron distributions
 - Model A: fully correlated nucleons
 - Model B: independent nucleons
 - Model C: anticorrelated nucleons using SHM with 3 dV/dy

• Canonical Statistical Model

-Correlation only due to baryon number conservation

- Thermal production of proton and deuteron at freeze-out vs. late production of deuteron through coalescence
- Antideuteron-antiproton correlation has two possible sources of correlation:
 (1) anti-correlation due to baryon number conservation
 (2) anti-correlation due to coalescence

- Simple coalescence \rightarrow convolution of proton and neutron distributions
 - Model A: fully correlated nucleons
 - Model B: independent nucleons
 - Model C: anticorrelated nucleons using SHM with 3 dV/dy

• Canonical Statistical Model

-Correlation only due to baryon number conservation

• Measurement can be described by SHM but only with a relatively smaller correlation volume 1.6 dV/dy than other hadrons indicating presence of additional correlation compared to the $V_c = 3 \text{ dV/dy}$

• Model C that incorporate deuteron production from the coalescence of thermally produced nucleons with $V_c = 3 \, dV/dy$ gives more consistent picture with other hadrons

Correlation between deuteron and Lambda baryon

- deuterons are not produced from the coalescence of Lambda baryon
 - \rightarrow the only source of correlation is baryon number conservation

Consistent with $V_{\rm C} = 3 \, \mathrm{d}V/\mathrm{d}y$

baryon number conservation in the underlying processes is consistent with other hadrons

H.-T. Ding et al., Phys. Rev. Lett 132 (2024) 201903

Lattice QCD studies with magnetic fields show a significant effect on fluctuations of conserved charges

Probing initial magnetic field using e-by-e fluctuation

Shows an increasing trend consistent with LQCD predictions

- deviates from unity by ~20% in peripheral collisions.
- Thermal-FIST model without magnetic field fails to describe the observed trend in data

- Measurements of net-proton fluctuation upto 3rd order is consistent with SHM expectations
- Deviation of 2nd order fluctuations from Skellam baseline is mainly due to Quantum number conservation
- Measurement suggests conservation of baryon and strange quantum number over a larger correlation volume (3 dV/dy) compared to the string models
- Fluctuation measurements can be a useful tool to distinguish between different hadronization models of strangeness and nuclei
- $\sigma^{11}_{Q,p} / \sigma^2_Q$ increases from peripheral to central Pb–Pb collisions, qualitatively consistent with LQCD calculation in the presence of a magnetic field

- Measurements of net-proton fluctuation upto 3rd order is consistent with SHM expectations
- Deviation of 2nd order fluctuations from Skellam baseline is mainly due to Quantum number conservation
- Measurement suggests conservation of baryon and strange quantum number over a larger correlation volume (3 dV/dy) compared to the string models
- Fluctuation measurements can be a useful tool to distinguish between different hadronization models of strangeness and nuclei
- $\sigma_{Q,p}^{11} / \sigma_{Q}^{2}$ increases from peripheral to central Pb–Pb collisions, qualitatively consistent with LQCD calculation in the presence of a magnetic field

Thank you for your attention

Back up

What do we expect to see in the data?

- Fluctuations of conserved charges appear only inside finite acceptance
- In the limit of very small acceptance \rightarrow only Poissonian fluctuations
- Test if the deviation is consistent with HRG / LQCD

Net-Q,S fluctuations

- Net-Q, S: \rightarrow strongly dominated by resonance feed-down
- Net-B:
 - no resonance feed-down to p-p pair
 - the best suitable candidate for measuring charge susceptibilities is net-p

Probing initial magnetic field using e-by-e fluctuation

• Qualitatively, in the HRG model $\sigma_{Q,p}^{11} \langle p \rangle$ due to proton self-correlation, while the net charge susceptibility is driven by pion multiplicity, $\sigma_{Q}^{2} \langle \pi \rangle$. Therefore, in first-order $\sigma_{Q,p}^{11} / \sigma_{Q}^{2}$ is proportional to $\langle p \rangle / \langle \pi \rangle$.

HRG with Magnetic Field

HRG with final state interaction (baryon annihilation)

• $\langle p \rangle / \langle \pi \rangle$ ratio can be changed due to the magnetic field or due to other effects such as baryon annihilation \rightarrow More insight on magnetic field can be obtained from the simultaneous comparison of $\sigma^{11}_{\ Q,p}$ and $\langle p \rangle / \langle \pi \rangle$ ratios as well as from the measurement of $\sigma^{11}_{\ Q,p}$ in pp collisions as a null test

Sourav Kundu, CERN