#### Anisotropic Electrical Conductivity in Rotating Hadron Gas

Asian Triangle Heavy-Ion Collision (ATHIC 2025)

(15<sup>th</sup> January, 2025)

#### Nandita Padhan

National Institute of Technology Durgapur



**Collaborators:** Ashutosh Dwibedi Dr. Arghya Chatterjee Dr. Sabyasachi Ghosh

イロト イヨト イヨト イヨト

200

# Introduction



 In non-central Heavy Ion Collisions, a large magnetic field as well as angular velocity can be produced.
 F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77, 024906 (2008)

$$\Rightarrow \sqrt{s_{NN}} = 200 \text{ GeV}, \ L_0 = 5 \times 10^5 \ \hbar \text{ at an impact}$$
parameter  $b = 5 \text{ fm}.$ 

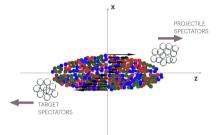
Even 1% angular momentum transfer  $\Rightarrow 10^3\,\hbar$  angular momentum of QGP.

- The QGP exhibits a significantly high average vorticity.
- Then this vorticity is effectively transferred to the hadronic matter as the system undergoes hadronization.
- Question:
  - Is it possible for rotation to alter the transport coefficients of nuclear matter?
- Here, I discuss how rotation affects electrical conductivity in hadronic matter.



National Institute of Technology Durgapur







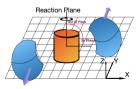


Figure: Geometry of non-central heavy ion Collision.



### **Motivation**



• In 2017, the STAR collaboration has seen the experimental evidence of vorticity (Nature 548 (2017) 62-65).

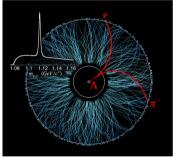


Figure: Source: Nature 548 (2017) 62-65

- In Phys.Rev.C 109 (2024) 3, 034914, the authors have studied the how the rotation affects the electrical conductivity in guark matter in a non-relativistic framework.
- In the present work we have tried to explore the electrical conductivity of hadronic matter in the relativistic framework

Nandita Padhan

National Institute of Technology Durgapur

#### Formalism



The current density representations of hadrons at the microscale and macroscopic levels under an applied electric field ( $\vec{\tilde{E}} \equiv \tilde{E}\hat{e}$ ) are expressed as:

$$J^{i} = \sum_{r} J^{j}_{r} = \sum_{r} g_{r} q_{r} \int \frac{d^{3} \vec{p_{r}}}{(2\pi)^{3}} \frac{p^{i}_{r}}{E_{r}} \delta f_{r} = \sum_{r} \sigma^{ij}_{r} \tilde{E}_{j} \equiv \sigma^{ij} \tilde{E}_{j}, \quad (p_{r0} \equiv E_{r})$$
(1)

(Here,  $\delta f_r$  represents the deviation of the system from local equilibrium.) The equation of motion (EOM) of a hadron in a rotating frame can be expressed using connection coefficients ( $\Gamma^{\alpha}_{\mu\lambda}$ ) as:

$$\frac{dp^{\alpha}}{d\tau} + \frac{1}{m} p^{\mu} p^{\lambda} \Gamma^{\alpha}_{\mu\lambda} = F^{\alpha}.$$
<sup>(2)</sup>

To see the similarity with the classical non-relativistic EOM in the rotating frame, the equation can be expressed as:

$$\frac{d\vec{p}}{dt} = \gamma_{\nu} m(\vec{\Omega} \times \vec{r}) \times \vec{\Omega} + 2\gamma_{\nu} m(\vec{v} \times \vec{\Omega}).$$
(3)

Key Forces in a Rotating Frame:

Coriolis force:  $-2\gamma_{\nu}m(\vec{\Omega}\times\vec{v})$ , Centrifugal force:  $-\gamma_{\nu}m\left[(\vec{r}\times\vec{\Omega})\times\vec{\Omega}\right]$ .

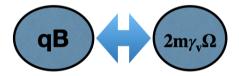
# Formalism (Contd.)



In our study, we focus solely on the Coriolis force and its effect on the transport characteristics of the system.

$$ec{F}_{ ext{Lor}} = q(ec{v} imes ec{B}), \quad ec{F}_{ ext{Cor}} = 2\gamma_v \textit{m}(ec{v} imes ec{\Omega}).$$

Substituting qB with  $2m\gamma_{v}\Omega$ , the two forces become mathematically analogous:



Comparison: Lorentz Force vs. Coriolis Force

- Lorentz force: Arises from electromagnetic interactions (q, B).
- **Coriolis force**: Due to rotation of the reference frame  $(m, \Omega)$ .

# Formalism (Contd.)



We use the covariant Boltzmann Transport Equation (BTE) to study statistical effects:

$$m_r \frac{df_r(x^{\mu}, \vec{p}_r)}{d\tau} = C[f_r] \implies p_r^{\mu} \frac{\partial f_r}{\partial x^{\mu}} - \Gamma^i_{\mu\lambda} p_r^{\mu} p_r^{\lambda} \frac{\partial f_r}{\partial p_r^{i}} + m_r F^i_r \frac{\partial f_r}{\partial p_r^{i}} = C[f_r].$$
(4)

For systems slightly out of equilibrium,  $f_r = f_r^0 + \delta f_r$ , where:

$$f_r^0 = \frac{1}{\left[e^{(p_r^{\alpha}u_{\alpha}-\mu)/T} - \xi\right]}$$

( $\xi=-1$  for baryons,  $\xi=+1$  for mesons.)

In the Relaxation Time Approximation (RTA):

$$p_r^{\mu} \frac{\partial f_r^0}{\partial x^{\mu}} - \Gamma^{\alpha}_{\mu\lambda} p_r^{\mu} p_r^{\lambda} \frac{\partial}{\partial p_r^{\alpha}} (f_r^0 + \delta f_r) + q_r F^{\alpha\beta} p_{r\beta} \frac{\partial}{\partial p_r^{\alpha}} (f_r^0 + \delta f_r) = -\frac{(u^{\alpha} p_{\alpha}) \delta f_r}{\tau_c}.$$
 (5)

After solving:

$$\frac{\partial f^0}{\partial E}\frac{\vec{p}}{p_0}\cdot(q\vec{E})+2m\gamma_v(\vec{v}\times\vec{\Omega})\cdot\frac{\partial\delta f}{\partial\vec{p}}=-\frac{\delta f}{\tau_c}.$$

Nandita Padhan

# Formalism (Contd.)



In a rotating HRG, the angular velocity  $\vec{\Omega} = \Omega \hat{\omega}$  introduces anisotropy. To solve the BTE, we take the initial guess as:

$$\delta f = -\vec{p} \cdot \vec{X} \left( \frac{\partial f^0}{\partial E} \right),$$

with  $\vec{X}$  expressed as:

$$ec{X} = lpha \hat{e} + eta \hat{\omega} + \gamma (\hat{e} imes \hat{\omega}),$$

After solving the values of  $\alpha$ ,  $\beta$ , and  $\gamma$ , the current density can be expressed as:

$$J_{r}^{i} = -g_{r}q_{r}^{2}\int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{p^{i}p^{l}}{E^{2}} \frac{\partial f_{r}^{0}}{\partial E} \left(\frac{\tau_{c}}{1 + \left(\frac{\tau_{c}}{\tau_{\Omega}}\right)^{2}}\right) \left[\delta_{jl} + \left(\frac{\tau_{c}}{\tau_{\Omega}}\right)^{2}\omega_{j}\omega_{l} + \left(\frac{\tau_{c}}{\tau_{\Omega}}\right)\epsilon_{ljk}\omega_{k}\right]\tilde{E}_{j}.$$
 (6)

Comparing the macroscopic expression for Ohm's law,  $J_r^i = \sigma_r^{ij} \tilde{E}_j$ , the electrical conductivity can be expressed as:

$$\implies \sigma^n = \sum_r \frac{g_r q_r^2}{3T} \int \frac{d^3 p}{(2\pi)^3} \frac{\tau_c \left(\frac{\tau_c}{\tau_\Omega}\right)^n}{1 + \left(\frac{\tau_c}{\tau_\Omega}\right)^2} \frac{p^2}{E^2} f_r^0 (1 + \xi f_r^0).$$

#### **Result and Discussion**

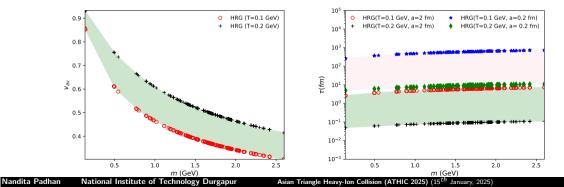


For determining the relaxation time, we adopt the Hadron Resonace Gas (HRG) model

$$\tau_c = 1/(n_{\rm HRG}^{id} v_{\rm av}^2 \pi a^2) , \qquad (7)$$

Here,  $n_{\text{HRG}}^{id}$  represents the system's number density, the parameter 'a' is taken from the hard sphere scattering model, and the velocity is defined as:

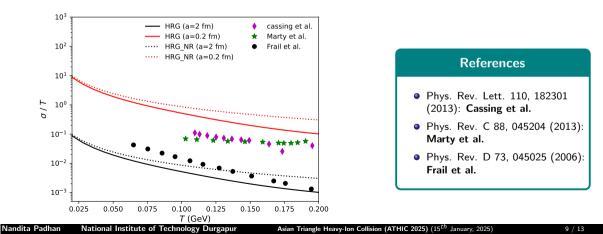
$$v_{\rm av} = \int \frac{d^3 p}{(2\pi)^3} \frac{p}{E} f_0 / \int \frac{d^3 p}{(2\pi)^3} f_0 .$$
 (8)



# **Electrical Conductivity**

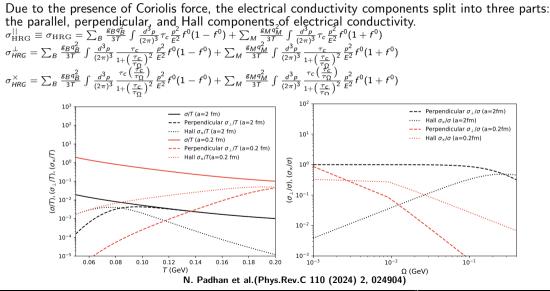


We have shown the variation of  $\sigma/T$  with temperature (*T*). The results are compared with data from: Phys. Rev. Lett. 110, 182301 (2013), Phys. Rev. C 88, 045204 (2013), and Phys. Rev. D 73, 045025 (2006), while varying the scattering length 'a' from 0.2–2 fm.



# **Anisotropic Electrical Conductivity**





Nandita Padhan

National Institute of Technology Durgapur

Asian Triangle Heavy-Ion Collision (ATHIC 2025) (15th January, 2025)

10 / 13

# Summary



- We have calculated the rotational effect in electrical conductivity using the Hadron Resonance gas model. We used BTE in relativistic framework using relaxation time approximation.
- We observed the anisotropic electrical conductivity tensor ( $\sigma$ ), analogous to the Lorentz force, with the following components: **Parallel** ( $\sigma^{\parallel}$ ): Unaffected by rotation ,**Perpendicular** ( $\sigma^{\perp}$ ) ,**Hall** ( $\sigma^{\times}$ )
- We observed at low angular velocity,  $\sigma^{\perp} > \sigma^{\times}$ , while at high angular velocity,  $\sigma^{\times} > \sigma^{\perp}$ .
- We have also observed Smaller scattering lengths cause earlier transitions from  $\sigma^\perp$  dominance to  $\sigma^\times$  dominance.

#### References



- N. Padhan, A. Dwibedi, A. Chatterjee, and S. Ghosh, Effect of Coriolis force on electrical conductivity tensor for the rotating hadron resonance gas, Phys. Rev. C 110, 024904 (2024)
- A. Dwibedi, C. W. Aung, J. Dey, and S. Ghosh, Effect of the Coriolis force on the electrical conductivity of quark matter: A nonrelativistic description, Phys. Rev. C 109, 034914 (2024)
- F. Becattini, F. Piccinini, and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C 77, 024906 (2008)
- L. Adamczyk et al. (STAR), Global hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548, 62 (2017)
- W. Cassing, O. Linnyk, T. Steinert, and V. Ozvenchuk, Electrical Conductivity of Hot QCD Matter, Phys. Rev. Lett. 110, 182301 (2013)
- R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and H. Berrehrah, Transport coefficients from the Nambu-Jona- Lasinio model for SU (3)f, Phys. Rev. C 88, 045204 (2013)
- D. Fernandez-Fraile and A. Gomez Nicola, The Electrical conductivity of a pion gas, Phys. Rev. D 73, 045025 (2006)



# **Thank You**

Nandita Padhan National Institute of Technology Durgapur Asian Triangle

Asian Triangle Heavy-Ion Collision (ATHIC 2025) (15<sup>th</sup> January, 2025)

13 / 13