

Recent developments in open heavy-flavour physics: ALICE highlights

Samrangy Sadhu for the ALICE Collaboration **University of Bonn, Germany**

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in heavy-ion/hadronic collisions -> perturbative Quantum Chromodynamics (pQCD) can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q \leq 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of system

Charm

 $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ $t_{\rm c} \le 0.08 \; {\rm fm/c}$

Beauty $m_{\rm b} \sim 4.2 \, {\rm GeV/c^2}$ $t_b \le 0.03 \, {\rm fm/c}$

 Energy loss of partons traversing the QGP is expected to occur via inelastic processes : radiative energy loss via medium-induced gluon radiation • Elastic processes : interactions with the QGP constituents

Heavy flavour hadrons in small systems

Production of heavy-quark hadrons can be calculated using the factorization approach :

$$\frac{\mathrm{d}\sigma^{\mathrm{H}_{c}}}{\mathrm{d}\sigma^{\mathrm{H}_{c}}_{p_{\mathrm{T}}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = \mathrm{PDF}(x_{1},\mu_{F}) \cdot \mathrm{PDF}(x_{2},\mu_{F}) \otimes \frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F}) \otimes D_{\mathrm{c}\to H_{c}}(z=\frac{p_{\mathrm{H}_{c}}}{p_{c}},\mu_{F})$$

Parton distribution functions (PDFs)

Initial condition from data

Hard scattering cross section (pQCD)

Fragmentation function (hadronisation)

Assumed to be universal across **collision systems**

Physics Procedia 51 (2014) 25 – 30

non-perturbative

hadronization

non-perturbative phenomenology + fit to data (e⁺e⁻, e⁻p)

Measurements of heavy flavour particles :

- Test the perturbative QCD (pQCD) calculations
- Provide input for the data driven non-perturbative QCD (npQCD) quantities

Study of heavy-flavour physics in different collision systems

In small systems:

In heavy-ion system:

Pb-**Pb** collisions:

- Sensitivity to the energy-loss mechanism of heavy quarks (radiative processes)
- Diffusion motion of heavy quarks via multiple low-momentum transfer interaction with QGP constituents
- Possible modification of the quark hadronization and collective effects

This talk:

- Physics from Pb-Pb, p-Pb and pp collision systems.
- What's new from Run 2 and Run 3?
- Plans for Run 4 onwards

ا ا

Time Projection Chamber - track reconstruction - particle identification

ALICE apparatus (run 2)

ElectroMagnetic Calorimeter

- trigger
- particle identification

F ,

Time-Of-Flight detector - particle identification

Time Projection Chamber - track reconstruction - particle identification

ElectroMagnetic Calorimeter

- trigger
- particle identification

F ,

Time-Of-Flight detector - particle identification

Time Projection Chamber - track reconstruction - particle identification

Inner Tracking System - track reconstruction - vertex determination

ElectroMagnetic Calorimeter

- trigger
- particle identification

Time-Of-Flight detector - particle identification

Time Projection Chamber - track reconstruction - particle identification

Inner Tracking System - track reconstruction - vertex determination

Cross-section measurements of charm and beauty

JHEP 12 (2023) 086

JHEP 10 (2024) 110

Prompt charm hadron:

hadrons from c-quark hadronization or from the decay of excited charm hadrons

Non-prompt charm hadron: charm hadrons from beauty-

hadron decays

• p_{T} -differential cross sections described by pQCD calculations (FONLL, kT-factorization, GM-VFNS) ➡ Good agreement within uncertainties

FONLL : JHEP 05 (1998) 007, JHEP 10 (2012) 137 kT-factorization : Phys. Rev. D 104 (2021) 094038 GM-VFNS : JHEP 12 (2017) 021, Nucl. Phys. B 925 (2017) 415-430

Measurements of the baryon-to-meson yield ratio -> p_T dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e⁺e⁻

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash) Eur. Phys. J. C 74 (2014) 3024

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash) Eur. Phys. J. C 74 (2014) 3024

Different hadronization mechanisms proposed:

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash) Eur. Phys. J. C 74 (2014) 3024

Different hadronization mechanisms proposed:

Color reconnection beyond leading color (PYTHIA 8 CR Mode 2)

Increased feed-down from an augmented set of excited charm baryons (Statistical Hadronisation model + Relativistic Quark model) Phys. Lett. B 795 (2019) 117-121

Hadronization via coalescence and fragmentation in a thermalised system of gluons, light quarks and antiquarks (Catania, Quark (re)Combination Model) Phys. Lett. B 821 (2021) 136622, Eur. Phys. J. C 78 (2018) 344

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

- → Charm-hadron tagged jets
- \rightarrow Azimuthal correlations of charm hadrons with charged particles

Charmed-hadron tagged jets

Charmed-hadron tagged jets

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

→ Charm-hadron tagged jets

→ Azimuthal correlations of charm hadrons with charged particles

Charmed-hadron tagged jets

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

 \rightarrow Charm-hadron tagged jets

→ Azimuthal correlations of charm hadrons with charged particles

arXiv:2411.10104

Charmed-hadron tagged jets

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

 \rightarrow Charm-hadron tagged jets

→ Azimuthal correlations of charm hadrons with charged particles

Indication that charm fragmentation into Λ_c^+ is softer and produces more collinear-associated particles compared to fragmentation into D⁰

Charm hadron measurement in p–Pb collisions

- D-meson R_{pPb} is compatible with unity and compared to model predictions including CNM effects
- ✓ Models underestimate the data (only $\Lambda_c^+ R_{pPb}$ is described below 2 GeV/c)

• Both Λ_c^+ and $\Xi_c^0 R_{pPb}$ are compatible within uncertainties \rightarrow similar modification of the production in p–Pb collisions $\checkmark R_{pPb}$ of Ξ_c^0 is larger than unity \rightarrow no conclusion of increasing trend with p_T due to large uncertainties

Beauty hadron measurement in p–Pb collisions

 $p_{\rm T}$ -integrated $R_{\rm pPb}$ of non-prompt D⁰ and J/ ψ measured:

- ✓ Suppression at forward rapidity whereas compatible with unity at backward rapidity
- ✓ Good agreement with model predictions based on nuclear PDFs, within uncertainties -> no hot medium effects

Compared with LHCb:

 \checkmark Similar dependency on p_{T} within experimental uncertainties

Phys. Lett. B 839 (2023) 137796

- quarks with the medium
- Hint of a hierarchy $R_{AA}(D^0) < R_{AA}(D_s^+) < R_{AA}(\Lambda_c^+)$ in $4 < p_T < 8$ GeV/c in 0–10%, while less pronounced in 30–50%
- For $p_T > 10$ GeV/c, all R_{AA} are compatible within uncertainties

R_{AA} of charm hadrons in Pb-Pb collisions

• Suppression of all charm species from $p_T > 6$ GeV/c for 0–10% and from $p_T > 4$ GeV/c for 30–50% \rightarrow Interaction of charm

Beauty Quark Energy Loss in Pb-Pb

- Intermediate p_T (5-20 GeV/c): $R_{AA}(b) > R_{AA}(c)$
- High p_T : $R_{AA}(b) \sim R_{AA}(c)$ within large uncertainties

- Described by models: smaller b quark energy loss due to dead cone for gluon radiation
- Dip due to formation of D and B mesons via coalescence hardening the D p_{T} spectra

Elliptic flow (v₂) of charm and beauty quarks

Fourier decomposition of the azimuthal distribution of particles :

EPJC 83 (2023) 1123

• $v_2(b \rightarrow D^0) < v_2(D)$: Different degree of participation between charm and beauty quarks in the medium expansion

Phys. Lett. B 839 (2023) 137796

- Ratio increases from pp to semicentral and central Pb–Pb collisions at the intermediate p_{T} region
- Compare to different model predictions

✓ SHMc : describes the ratio in semicentral collisions and underestimate the data in $4 < p_T < 8$ GeV/c in central collisions

 \checkmark Catania : underestimates the data in the intermediate p_{T} region

✓ TAMU : reproduce the magnitude and shape of the data, and better description within uncertainties

Baryon production : Λ_c^+/D^0 ratio in Pb-Pb collisions Pb $30-50\% \text{ Pb-Pb} \pm \sqrt{s_{NN}} = 5.02 \text{ TeV}$ pp SHMc + FastReso + corona Catania TAMU $^{10}p_{_{}^{}}$ (GeV/c) 1 ¹⁰ p₋ (GeV/c)

SHMc : JHEP 07 (2021) 035 Catania : Phys. Lett. B 821 (2021) 136622 (pp) EPJC 78 (2018) 348 (Pb-Pb) TAMU : Phys. Lett. B 795 (2019) 117–121 (pp) Phys. Rev. Lett. 124 (2020) 042301 (Pb–Pb)

In pp collisions :

- Production cross section described by pQCD calculations
- Fragmentation function universality is violated in pp collisions
 - Hadronization via recombination is dominant at low p_{T}

- Baryon enhancement depends on the event multiplicity
- Both charm and beauty quarks lose energy in the medium
 - Beauty quarks lose less energy than charm quarks

• $V_2(C) > V_2(b)$

D_s^+ and $b \rightarrow D^0$ production :

Measurements are extended to lower p_T and more granular w.r. t. run 2 → Stronger constraints on the modelling of charm-quark hadronization

New results from run 3

 $\Sigma_{c}^{0,++}(2520)/\Sigma_{c}^{0,++}(2455)$ ratio :

ALI-PREL-574270

New results from run 3

First $\Sigma_{c}^{0,++}(2520)$ production measurement at the LHC

 PYTHIA with neither Monash nor CR-BLC reproduces data • Ratio sensitive to c-diquark spin-1 to spin-0 suppression factor

Λ_{c}^{+} fragmentation function:

- Compared to PYTHIA simulations and to a measurement of D⁰ charged jets
- Fragmentation of charmed baryons is softer with respect to charmed mesons, as predicted by models including mechanisms of charmed-baryon production beyond leading-colour string fragmentation

New results from run 3

Improved precision compared to Run 2

New results from run 3

Λ_{c}^{+} fragmentation function:

- Compared to PYTHIA simulations and to a measurement of D⁰ charged jets
- Fragmentation of charmed baryons is softer with respect to charmed mesons, as predicted by models including \bullet mechanisms of charmed-baryon production beyond leading-colour string fragmentation

Improved precision compared to Run 2

Outlook for Run 4 : Femtoscopy of the QCD

Technical Design reports: ITS3 FoCal

Main motivations: Improve performance for open heavy-flavour and dielectron measurements

- Wide η range
- Excellent precision for secondary vertexing and PID performance
- high readout rate capabilities

ALICE 3 LOI : **CERN-LHCC-2022-009**

Physics motivation: Measurements of rare charm and beauty hadrons (especially multicharm) and correlations to be measured precisely at ultra-low transverse momenta

Find out more

The ALICE experiment: A journey through QCD

CERN-EP-2023-009 27 January 2023

ALICE upgrades during the LHC Long Shutdown 2

Thank you

Back up

Cross-section measurement of D mesons

JHEP 12 (2023) 086

Measurement of beauty cross section

JHEP 10 (2024) 110

ALI-PUB-586563

ALI-PUB-586555

Non-prompt charm hadron : charm hadrons from beautyhadron decays

p 👝 🏧

PYTHIA 8 + FONLL

Consistent with data within uncertainties

TAMU

- Good agreement for D⁰
- Tend to overestimate the D_s^+

GM-VFNS

• Underestimate the data at low $p_{\rm T}$, whereas a better description at high $p_{\rm T}$

Heavier charm baryons : Ω_c^0 , $D_{s1}^+(1^+)(2536)^+$ and $D_{s2}^*(2^+)(2573)^+$

Phys. Lett. B 846 (2023) 137625

- Ω_c^0/D^0 ratio shows no p_T dependence
- PYTHIA 8 Monash, PYTHIA 8 CR-BLC, quark-recombination model (QCM) underestimate the Ω_c^0/D^0 ratio
- Catania closer to the measurement when \bullet additional resonances are considered

First measurement of orbitally excited charm-strange mesons in pp collisions by ALICE Reproduced by SHM, models based on coalescence

Measurements of $D_{s1}(1^+)(2536)^+$ and $D_{s2}^*(2^+)(2573)^+$

First measurement of orbitally excited charm-strange mesons in pp collisions by ALICE

arXiv:2409.11938

For $D_{s,2}^*(2^+)(2573)^+/D_s^+$, the data points suggest a possible decrease with increasing average charged-particle multiplicity :

- **PYTHIA8** simulations w/ and w/o rescattering

- SHM and SHMc :
- Measured ratios $D_{s1}(1^+)(2536)^+/D_s^+$ within 0.5 and 1.2 σ at high and low multiplicity, respectively.

 $p \rightarrow \Sigma_{m}$

- They slightly underestimate the measured central values of the $D_{s2}^*(2^+)(2573)^+/D_s^+$ ratio by 2σ and 1σ at low and high multiplicity, respectively.
- **EPOS4HQ** : predicted ratios are systematically lower in the case of pure coalescence compared to pure fragmentation.

• might be related to the fact that the lifetime of the $D_{s2}^*(2^+)(2573)^+$ is longer than the expected duration of the hadronic phase in the collision • the magnitude of hadronic interactions for D mesons with light hadrons is expected to be small in high-multiplicity pp collisions

Azimuthal anisotropy in small system

v_2 of HF particles in high multiplicity p—Pb collisions.

- v₂ of inclusive muons (dominated by HF decays at high p_T) at forward rapidity compared with c,b —> e at mid-rapidity.
- Good agreement within uncertainties.

- Data compared with predictions from CGC and AMPT models for c,b —> μ
 - AMPT: *v*₂ driven by the anisotropic parton escape mechanism
 - CGC: correlations between partons in the initial stages generate a v₂
- Both models describe data at high p_T

Charm quark interaction and energy loss in the QGP

- coalescence and/or fragmentation required to describe data.

Charm quark in Pb-Pb collisions

• Understanding interaction and energy loss of heavy quarks in the QGP over time -> Simultaneous comparison of D-meson R_{AA} and v_2 • Interplay of CNM effects, realistic evolution of the QGP, heavy-quark interaction (radiative and/or collisional) and hadronization via

• Models provide fair description of data -> still challenging for models to describe R_{AA} and v_2 simultaneously in the full p_T range.

Elliptic flow (v₂) of beauty quarks

- $V_2(b \rightarrow D^0) > 0$
- $v_2(b \rightarrow D^0) < v_2(D)$: Different degree of participation between charm and beauty quarks in the medium expansion

Theory models beauty quark transport in QGP \rightarrow give reasonable description of data.

- All models, except TAMU (collisional only) include collisional interactions and radiative processes
- Hadronization via coalescence and fragmentation.

