EvtGen status and news

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

LHC Heavy-flavour WG topical meeting

June 28, 2024

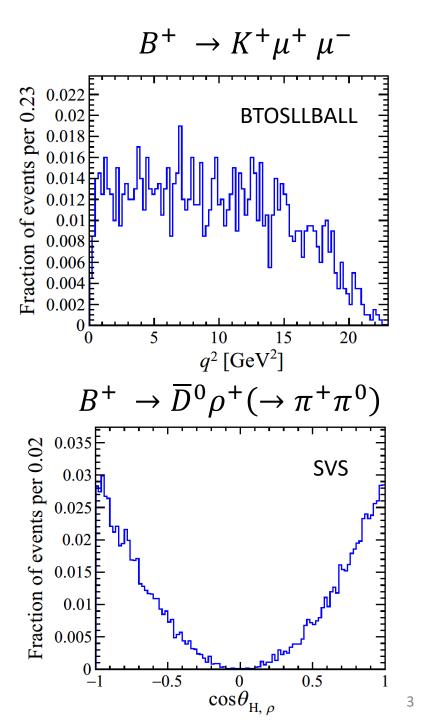
EvtGen generator

- Specialised for heavy-flavour hadron decays
 - Used as well inside simulation of b jets
- Contains about 130 decay models implementing specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decay branching fractions do not add up to 100%; Remainder is filled up by generating quark configurations and passing those to <u>Pythia8</u> for fragmentation
 - Fraction of decays passed to Pythia8 depends on particle (*b*-baryons rely more on Pythia8 than others)
- τ decays simulated using TAUOLA
- Final-state radiation (FSR) simulated using <u>PHOTOS</u>

Example collision simulated by Pythia8

Status and plans

- Developed in the 90's, stable over past 10 years (changes mostly additions of new models)
- Physics wise no plan for changes in near future
- Major goal ⇒ enable thread safety
- Code resides in <u>HepForge</u> with mirror in <u>CERN gitlab</u>


Recent developments

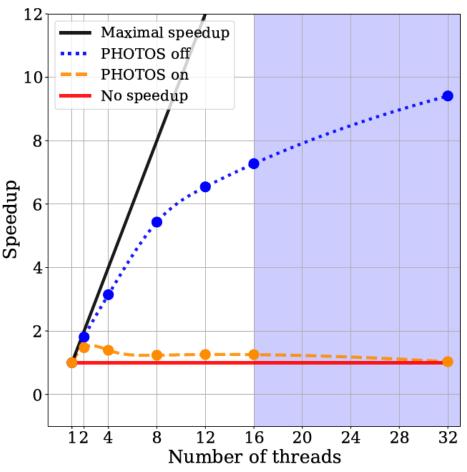
- Work on code modernisation, clean-up, removal of duplications, and documentation
- Implemented global testing framework for validation
- Fixing of broken models
- First full adaptation towards thread safety (further code redesign intended for the future)
- Studies of alternatives for τ simulation (to be continued)
- Added alternatives for FSR simulation (and further studies intended for the future)

Testing framework

- Simulation needs testing and validation after structural changes due to code consolidation and implementation of thread safety
- Tests (in different formats) existed only for about 40% of the 130 decay models
- Migrated all tests and added new ones to a common testing framework
- \Rightarrow With common testing module and configuration JSON files
- Finalized first working version with tests for all models
- Some models support various configurations
- \Rightarrow More tests needed to cover all configurations

 \Rightarrow Will require to add new tests for each new model

Implementation of multithreading


Challenges

- Internal: structural limitations
 - Global instance of random number generator
 - Global instance of particle properties and decay table
- External: limitations from dependences (look for alternatives) on TAUOLA and PHOTOS

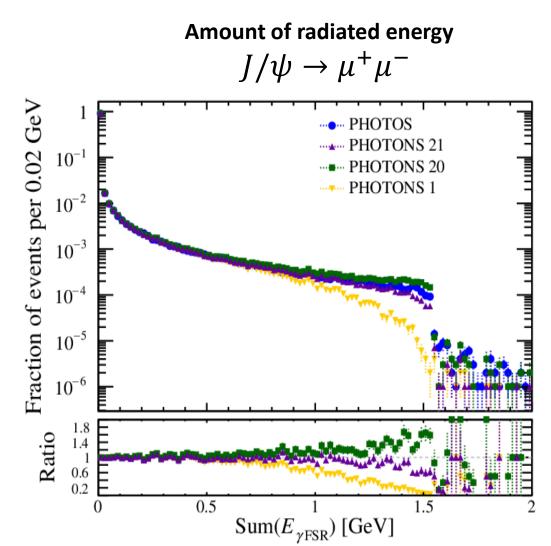
Preliminary solution

- Static objects made constant or thread-local
- Global singleton objects made thread-local
- Serialized (mutexed) calls to PHOTOS and TAUOLA
- ⇒ Deeper structural changes needed to fully exploit multi-threading
- \Rightarrow But performance limited by external dependencies

With help of research-software engineers: Heather Ratcliffe, Chris Brady

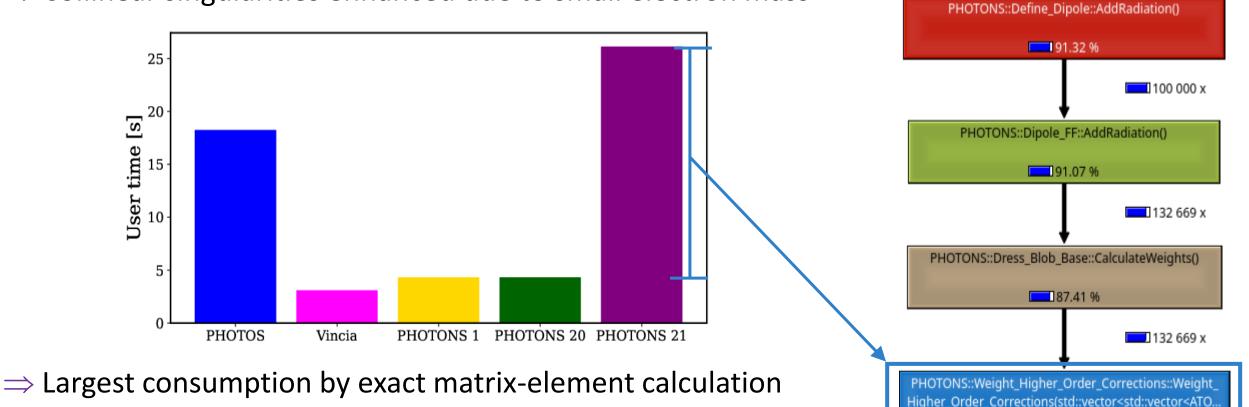
Final-state radiation in EvtGen

- EvtGen relies on external specialised generators to add QED FSR corrections
- Generators generally treat the effect of FSR as a multiplicative correction to the decay rate


 $d\Gamma^{radiative} = d\Gamma^{Born} f(\Phi) d\Phi$

 Φ : Phase-space of photons

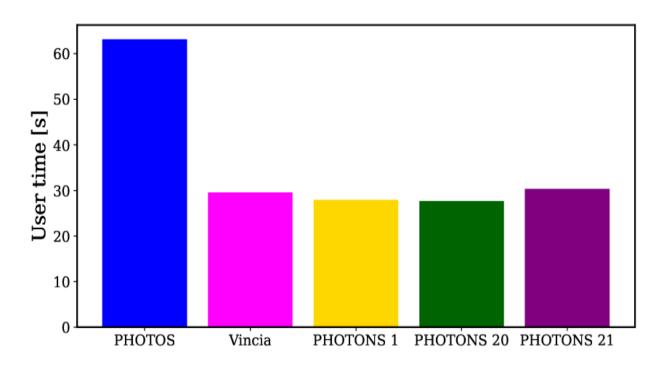
- Decay tree is passed (node-by-node) to PHOTOS
- PHOTOS adds photons based on $f(\Phi)$ and event is retrieved
- Transference of events (back and forth) via HEPMC objects
- Recently studied and added alternatives to PHOTOS


Sherpa's PHOTONS++ for FSR

- <u>PHOTONS++</u> in <u>Sherpa</u> can simulate emission of soft photons based on YFS approximation (mode 1)
- If switched on also hard photons based on collinear approximation (mode 2), with
 - Approx. matrix-element corrections (mode 20) or
 - Exact matrix-element corrections (mode 21)
- Using option 1, observed fewer hard photons with respect to PHOTOS (note that PHOTOS has matrixelement corrections implemented)
- Generally good agreement with PHOTOS using options 20 and 21
- ⇒ Will enable user to switch between options for systematic studies

A word on timing

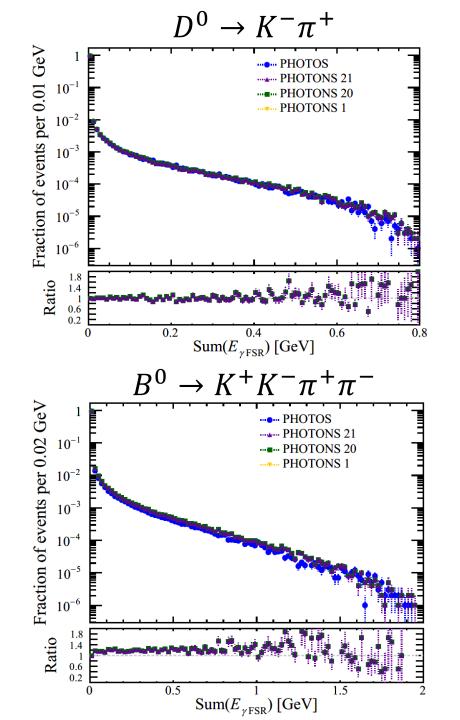
- Compare simulation time using $J/\psi \rightarrow e^+e^-$ decay as benchmark
- \Rightarrow Collinear singularities enhanced due to small electron mass


- \Rightarrow Good precision/time trade-off for option 20 (will use as default)
- \Rightarrow Potential speedup using Vincia or PHOTONS by about factor 4

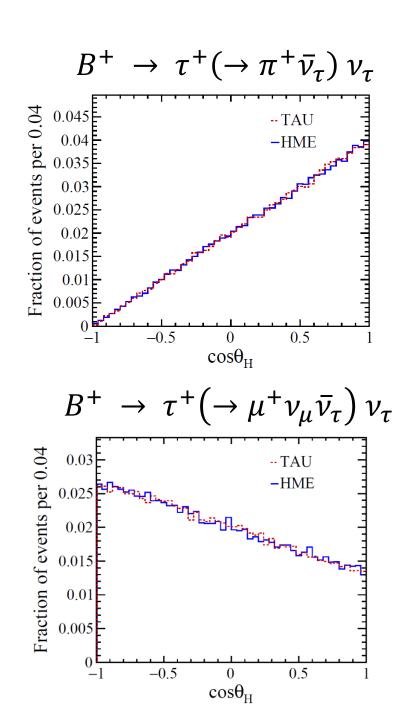
86.48 %

Another word on timing

• Compare simulation time when simulating generic $\Upsilon(4S) \rightarrow B\overline{B}$


 \Rightarrow Benchmark for general use

 \Rightarrow No large difference between PHOTONS options in generic case \Rightarrow Potential speedup using Vincia or PHOTONS by about factor 2


News regarding FSR

- Sherpa's PHOTONS++ interface already in master branch and surely part of next release
- PHOTOS flag is deprecated by new general FSR flag
- User able to choose between PHOTOS (default) and Sherpa's PHOTONS++
- Generally very good agreement between generators
- User able to modify (previously hard coded) parameters of PHOTOS and PHOTONS++
- Exact details will follow with new release

Plugins for au decays

- EvtGen relies on TAUOLA for τ decays
- EvtGen ↔ TAUOLA interface based on HEPMC
- Spin-state information of τ not propagated
 - TAUOLA reconstructs spin info from ancestors
 - Needed for analyses sensitive to \u03c6 polarization
- Simulation of *τ* decays with spin-state propagation possible with PYTHIA8 using HME (helicity-matrix element) amplitude model
- Prototyped EvtGen ↔ Pythia interface propagating spin-density matrix
- Generalisation of helicity/spin basis conversion has turned out challenging (but wish to continue work)

Summary and outlook

- Physics simulation inside EvtGen is kept invariant
- Implemented general testing framework
- Major modernisation and code clean-up campaign about to conclude
- ⇒ Converged on preliminary set of solutions to enable thread safety of generator (full exploitation of multi-threading will require further structural changes)
- \Rightarrow Performance limited by external dependencies
- Implemented new interface to Sherpa's PHOTONS++ as alternative for FSR
- τ decays: Propagation of spin-info across generators turned out challenging
- \Rightarrow Wish to continue in the future (help is welcome)
- Release 3.0.0 expected to come out by the end of summer 2024
- EvtGen paper being prepared (expected by early 2025)