Overview of Belle II Event Generators

Swagato Banerjee

LHC Heavy Flavor WG: Simulation Techniques 28 June 2024, CERN

Overview of Belle II Event Generators

AAFH	Non-radiative two photon process	MadGraph	Direct production of New Physics
BABAYAGA.NLO	ee, μμ, γγ	PHOKHARA	Low multiplicity final state
BBBREM	Single Bremsstrahlung in eey	РНОТОЅ	Radiative corrections
BHWIDE	ee (large angle)	PYTHIA8.2	Quark fragmentation & decays
EKHARA	Some two-photon channels		Tou doonys
EvtGen	B, D and tau decay chains		Tau uccays
ККМС	$μμ, ττ, q\overline{q}, ν\overline{v}$	TEEGG	ee, single photon, single electron
KORALW	Radiative two-photon process	TREPS	Two-photon processes

Current focus and development activities

Goal is to reduce the limitations of simulation samples and make it as close as to data. Validation and integration of new event generators.

- EvtGen updates to branching fractions (DECAY.DEC) with new inputs from PDG. Update EvtGen decay models and parameters.
- Improvement and tuning of PYTHIA
- Updates to low multiplicity generators
- Implementation of New Physics models

EvtGen updates

(See Vidya Sagar's slides)

EVTGEN scalar to tensor decay

* vest frame

- Cosine Helicity distribution for Scalar to Tensor decay (e.g. $B^0 \rightarrow [K_2^* \rightarrow K\pi]\gamma$, $B^0 \rightarrow [\bar{D}_2^* \rightarrow \bar{D}\pi]\gamma$ using **HELAMP**/ **PARTWAVE** in **EvtGen** is incorrect when generating multiple events
- Issue may be due to EvtEvalHelAmp class
- Issue observed in EvtGen version 2.0.0, 2.1.1

Unresolved issue at every every every

Public scripts to reproduce this issue: https://gitlab.desy.de/sayan97/evtgen_issue/

PYTHIA tuning

Why tune Pythia parameters?

 π momenta distributions in B⁺ $\rightarrow \rho^+ \rho^0$: (shape comparison)

Pythia tune

- Ongoing efforts to tune Pythia parameters by G. Karyan and H. Ghumaryan
- Peter Skands [Pythia's author and author of Monash 2013 tune] consulted
- New strategy:
 - Identify a set of distributions sensitive to Pythia parameters showing data-MC differences as tuning variables (flavor dependent)
 - Obtain detector unfolded distributions of tuning variables
 - Systematics from detector resolution & acceptance should be corrected
 - Detector-independent Pythia tuning

Open Access

Eur. Phys. J. C (2014) **74**: 3024 https://doi.org/10.1140/epjc/s10052-014-3024-y

Special Article - Tools for Experiment and Theory

Tuning PYTHIA 8.1: the Monash 2013 tune

P. Skands^{1*}, S. Carrazza² and J. Rojo^{1,3}

Low multiplicity generators

TauolaBelle2: KKMC, Tauola & Photos(++)

Matrix element squared of τ - decays can be written as $|\mathcal{M}|^2 = G + s^{\mu} \omega_{\mu}$, where G is the spin-averaged part of the total width, s^{μ} is polarization vector of τ -lepton and ω_{μ} is the polarimeter vector encoding channel dependent phase space. Matrix element squared of $e^-e^+ \rightarrow \tau^-\tau^+$ decays takes the form: $|\mathcal{M}|^2 = |\mathcal{M}|^2_{spin-av} + \omega_{\mu} C^{\mu\nu} \overline{\omega}_{\nu}$ where $|\mathcal{M}|^2_{spin-av}$ is the spin-averaged part and $C^{\mu\nu}$ is the spin-correlation matrix. The event generator KKMC calculates the $|\mathcal{M}|^2_{spin-av}$ and $C^{\mu\nu}$, whereas ω_{μ} is done by TAUOLA.

Main references:

KK2F [S.Jadach, B.F.L.Ward, Z.Was, Comput.Phys.Commun. 130 (2000) 260] TAUOLA [S.Jadach, Z.Was, R.Decker, J.H.Kuhn, Comput.Phys.Commun. 76 (1993) 361] PHOTOS [E.Barberio, Z.Was, Comput.Phys.Commun. 79 (1994) 291]

- Photon radiation from tau production in $e^-e^+ \rightarrow \tau^-\tau^+(n\gamma)$ modeled by KKMC, while photon radiation in τ decays by PHOTOS. Also, $e^-e^+/\mu^+\mu^-$ radiation by PHOTOS++.
- 373 channels [including lepton flavor/lepton number/baryon number violating modes]
- 92 generic channels using PDG 2020 branching fractions, which add up to unity.
- Several new models for hadronic currents introduced [maintaining backward compatibility]
 - For $\tau^- \to \pi^- \pi^0 \nu$, $\pi^- 2\pi^0 \nu$, $2\pi^- \pi^+ \nu$, $\pi^- \pi^+ K^- \nu$, $\pi^- \pi^0 K^0 \nu$, $\pi^- 3\pi^0 \nu$, $2\pi^- \pi^+ \pi^0 \nu$ decays
 - New parameterization of $\tau^- \rightarrow \pi^- 4\pi^0 \nu$ and $2\pi^- \pi^+ 2\pi^0 \nu$ decays also added

MadGraph and EKHARA updates

- MadGraph is currently the main generator for producing signal samples for Dark Sector signatures. MadGraph 3.4.0 available via external library includes ISR and beamstrahlung effects [+Python 3 support]
- LHEInput module could not boost MCParticles from CMS to LAB.
 New module: LHEInput → BoostMCParticles → SmearPrimaryVertex introduced to take beam properties directly from Conditions Database
 <u>This new module can also be used with other generators providing LHEInput files.</u>
- EKHARA is a generator for some specific two-photon processes:
 - $\circ e^+e^- \rightarrow e^+e^-\pi^+\pi^- (EKHARA 1.X: \underline{arXiv/hep-ph/0510287})$
 - $\circ e^+e^- \rightarrow e^+e^-\pi^0 (\text{EKHARA 2.X: } \underline{arXiv/1009.1881})$
 - \circ e⁺e⁻→e⁺e⁻η, e⁺e⁻η', e⁺e⁻χ_{c1} (EKHARA 3.0: <u>arXiv/1805.07756</u>)
 - C++ based user interface available around EKHARA 3.0

ISR modeling in $e^+e^- o \mu^+\mu^-\gamma$ and $e^+e^- o au^+ au^-\gamma$

Comparison between Madgraph and KKMC shows good agreement

WHIZARD generator

- AAFH used to generate 4-leptons final states; not including ISR/FSR effects
- WHIZARD can simulate ISR effects for dark sector, low multiplicity analyses
- WHIZARD available; stores events in LHEF files; import via LHEInput

New event generators

Several ongoing activities

- $B \rightarrow K\pi\pi\gamma$ event generator updates with many K-resonances including interference effects to measure photon polarization in b \rightarrow sy via decay angular distributions of K-resonances
- New MC for b → s ℓ ℓ being developed with new vector amplitudes; ABSZ hadronic form factor; user can set non-zero complex Wilson coefficients for right-handed currents

Detecting lepton universality violation in angular distributions of $B \to K^* \ell^+ \ell^-$ decays

A. Sibidanov, T. E. Browder, S. Dubey, S. Kohani, R. Mandal, S. Sandilya, R. Sinha, S. E. Vahsen

• New BSM generator for $B^0 \rightarrow D^{*+} \ell^- \nu$

Implications for the ΔA_{FB} anomaly in $ar{B}^0 o D^{*+} \ell^- ar{
u}$ using a new Monte Carlo Event Generator

Bhubanjyoti Bhattacharya, Thomas E. Browder, Quinn Campagna, Alakabha Datta, Shawn Dubey, Lopamudra Mukherjee, Alexei Sibidanov

Ongoing discussion between T.S.Lau and EvtGen authors

$B ightarrow K^* \ell^+ \ell^-$ generator with new physics contributions

Alexei Sibidanov

University of Hawaii

Belle II Summer Workshop 12-16 June 2021

arXiv:2203.06827 [hep-ph]

or arXiv:2206.11283 [hep-ph] Phys. Rev. D 107, 015011 (2023).

15

Summary and Outlook

• Discussions with EvtGen, Pythia, KKMC authors

• Discussions on going with PDG, HFLAV and BESIII to synchronize branching fractions and decay model parameters in B, D and τ decays

• Proper documentation (sphinx/confluence), maintain record of each modification via issues in gitlab for future references

Thanks for your attention and help us to improve our MC.