How to make the invisible visible: Experimental Searches for Axions and Axion-like Particles

TO OWAMONIN SOLA

SungWoo Youn

IBS-CAPP

e alalas

DARK WORLD to SWAMPLAND 2024

Dark World to Swampland 2024: 9th IBS-IFT Workshop 2024.11.05 Institute for Basic Science, Daejeon

DARK WORLD

Dark matter business expanding

is Experiment map

for Bas

C. O'Hare (2020)

Axion dark matter

- Strong CP problem
 - PQ mechanism (1977)
 - U(1) global symmetry and scalar field
 - SSB => axion field (1978)
 - QCD axion: $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$ (cf. ALP)
 - Invisible axion (1979): $m_a \approx 10^{-6} eV \frac{10^{12} GeV}{f_a}$
- Cosmological implication
 - Accounting for dark matter (1983)

Annu. Rev. Nucl. Part. Sci. 65 485 (2016)

Goldstone boson

 $a(x) = \theta \times f_a$ at minimum

Axion models and detection

Axion coupling to SM

	Photons	Fermions	nEDMs
Hamiltonian	$g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$	$g_{aff} \mathbf{\nabla} a \cdot \widehat{\mathbf{S}}$	$g_{EDM}a\widehat{m{S}}\cdotm{E}$
Observable	Photon	Spin precession	Oscillating EDM
Detection	Power spectrum, photon counter,	Magnetometer, NMR, 	NMR, polarimeter,

Axion models

PQWW	DFSZ	KSVZ	
SM ferminons		BSM fermions	
2 Higgs	2Higgs+singlet	Higgs+singlet	
Standard ($f_a \sim v_{EW}$)	Invisible (f $_a \gg v_{\scriptscriptstyle EW}$)		
Ruled out	Benchmark		

Detection principle

- Sikivie effect (1983)
 - Macroscopic Primakoff

Sunrise

system

Detector

X-ray telescope

Shielding X-ray detecto

Regeneration Cavity (RC)

Haloscope

Dark matter halo in our galaxy

L = 9.26 m

в ~ 9 т

\//all

Sunset

system

Magnet bore

Production Cavity (PC)

Magnet String

• $P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right) \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{Q_c}{0.6}\right) \left(\frac{Q_c}{10^5}\right)$ ~100 photons/sec

- Helioscope
 - Solar axion

•
$$\mathcal{P}_{a \to \gamma} \approx 2.6 \times 10^{-17} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \left(\frac{B_0}{10 \text{ T}}\right)^2 \left(\frac{L}{10 \text{ m}}\right)^2 \mathcal{F}, \quad \mathcal{F} = \frac{2(1 - \cos qL)}{(qL)^2}$$

~10 photons/day

Axion production at lab

•
$$\dot{N_{\gamma}} \approx 4 \times 10^{-5} Hz \left(\frac{g_{a\gamma\gamma}}{10^{-10} \ GeV^{-1}}\right)^4 \left(\frac{P_{laser}}{40 \ W}\right) \left(\frac{BL}{560 \ Tm}\right) \left(\frac{\beta_{PC}}{5000}\right) \left(\frac{\beta_{RC}}{40000}\right)$$
 ~1 photons/day

lase

Axion searches

for Bas

ibs

Haloscope (DM axion)

Searches for Axions and ALPs

Haloscope Searches

9

is Cavity haloscopes

for Basi

ADMX

CAPP-9T

CAPP-12T

CAPP-8T

CAPP-8TB

Searches for Axions and ALPs

4.5x10⁵

4.0x10⁵

3.5x10⁵

3.0x105 2.5x105

And 2.0x10⁵ Und 1.5x10⁵

5.0x10⁴

0.0 L

1.0x10⁵ 0.22 T

0 1 2 3

. . .

. .

4.5x10⁵ 4.0x10⁵ 3.5x10⁵ • YBCO • Copper

3.0x10⁵

2.5x10 2.0x10 1.5x10 1.0x10

5.0x10

4

5 6 7 8 9

0.22 T. ··

0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Magnetic Field (T)

YBCO

Copper

.

	Magnetic Field (T)		Magn	Magnetic Field (T)	
	1 st Gen.	2 nd Gen.	3 rd Gen.		4 th Gen.
Material	YBCO	Gd BCO	Eu BCO + APC		Eu BCO + APC
Manufacturer	AMSC	Theva	Fujikura		Fujikura
Volume [L]	0.3	1.5	1.5	0.2	37
Freq. [GHz]	6.9	2.3	2.2	5.4	1.2
Q @ 8 T	0.33 M	0.5 M	3.5 M	13 M	1.1 M
Application	Demostration	Axion search	AQN search	Axion search	Axion search

High-frequency approaches

Multiple-cell (pizza) PLB 777 412 (2018)

- Larger volume
- Simpler receiver chain
- ~4 x f_{TM010}

Higher-mode (wheel)

Mode	f _{rel}	Q _{rel}	V _{rel}	C _{abs}
TM ₀₁₀	1	1	1	0.69
TM ₀₃₀	3.6	1.9	1	0.05

JPG 47 035203 (2020)

Photonic crystal PRD 107 015012 (2022)

- $f \propto spacing$
- ~10 x f_{TM010}
- Kirigami tuning

• Flux-driven Josephson parametric amplifiers (JPAs)

Searches for Axions and ALPs

Searches for Axions and ALPs

Search highlight (IV) 1b^S

Dielectric cavity

o

TWPA PRD 108 062005 (2023)

21

FINUDA

B = 1.1 TR = 1.4 m

is Cavity haloscopes

se for Basi

Searches vs. predictions

Searches for Axions and ALPs

TITUTE OF SCIEN

1971 . शिर संचा अध

MADMAX

Dielectric power booster
 PRL 118 091801

Suitable for high-freq. search

metal wall

d

TUTE OF SI

KAIS

- Plasma haloscope
 - Wire metamaterial => bulk plasmon

$$\omega_p^2 = \frac{2\pi}{a^2 \log(\frac{a}{2r})}$$

metal wall

- ω_p independent of the detector size
- Large conversion volume at high frequencies

Resonant conversion when $m_a = \omega_p$ PRD 107 055013 (2023) The form of the

Prototypes (10x10 & 16x16) array (11.4 GHz)

- Lumped element haloscope
 - Broadband low mass (<1 ueV) search
 - Sensitive to pre-inflationary scenario

27

- Recent
 - CAST-CAPP: phase-matched cavities, ~20 ueV Nat. Comm. 13, 6180 (2022)
 - RADES: microwave fiber, ~34 ueV
 - Grenoble Axion Haloscope
 - 14T/52mm magnet, ~26 ueV
 - Taiwan Axion Search Experiment with Haloscope
 - 4.7 GHz, 11 x g_{arr}^{KSVZ}
 - Broadband Reflector Experiment for Axion Detection
 PRL 132 131004 (2024)
 - Parabolic reflector, THz region

Proposed

 Canfranc Axion Detection Experiment 90 GHz (W-band), Kinetic inductance detectors
 Superconducting axion search • SC cavity, 14T, 8.4 GHz (under construction)
 GrAHal-CAPP • 9T/800mm magnet, SC cavity, 1~3 ueV

JHEP 2021 75 (2021)

PRL 129 111802 (2022)

arXiv:2110.14406

Searches for Axions and ALPs

29

Helioscope Searches

Solar axion telescope

30

Black-body photons (keV) to axions In dense stellar plasma

Reconversion into photons (X-ray) in laboratory magnetic fields

$$\mathcal{P}_{a \to \gamma} \sim \left(\frac{g_{a\gamma\gamma}B_0L}{2}\right)^2 \operatorname{sinc}^2\left(\frac{qL}{2}\right), q \equiv \frac{m_a^2}{2E_a}$$

History

- BNL, JAPAN
- CAST (decommissioned in 2021)
- IAXO in plan

International AXion Observatory

- Large toroidal helioscope
 - 8 dipoles (5.4 T, 20 m x Φ600 mm)
- Diverse physics over wide range
 - Axions / ALP miracle / Astrophysical hints
- Goal : $g_{a\gamma} \sim 10^{-12} \ GeV^{-1}$

Baby-IAXO

Telescope

arXiv:2010:12076

Rotating Disk

Rotation System

- Approved in 2020 (DESY)
- First step towards full IAXO
 - 4 T / 10 m long => 10 x MFOM_{CAST}

Searches for Axions and ALPs

LSW Searches

Light shining through a wall

Axion production at laboratory

Two vertices => fourth power of coupling

- Model independent search
 - No need of cosmo./astrophys. source => pure axion-photon coupling

History

- BFRT (Brookhaven-Fermilab-Rochester-Trieste)
- OSQAR (LHC dipole at CERN)
- ALPS (HERA dipole at DESY)

ALPS II

Any Light Particle Search II

Summary

- Axions address two fundamental questions
 - Strong CP problem & dark matter mystery
- Theoretically well motivated but experimentally challenging
 - Weak coupling and unknown mass
- Tremendous search efforts
 - Different technologies targeting at different mass ranges
- Axion community is getting larger
 - New results, new groups and new ideas
- Next few decades must be critical/exciting
 - Covering a substantial portion of the parameter space
 - Uncovering the nature of dark matter

- Most sensitive for DM axion search in μeV region
 - Resonant conversion of axions into microwave photons
- Axion-photon conversion power ($a \rightarrow \gamma \gamma$)

$$P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right)$$

$$\times \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{C}{0.6}\right) \left(\frac{Q_c}{10^5}\right)$$

Magnetic field (B_0)

Signal-to-noise ratio (SNR)

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{1}{4} \frac{P_{a\gamma\gamma}}{k_B(T_{sys}/0.2 \text{ K})} \sqrt{\frac{\Delta t}{Q_a/10^6}}$$

System noise (in temperature) $T_{sys} = T_{thr} + T_{add}$ ex) 0.2 K ~ 3×10⁻²² W

Unknown mass = > scanning rate (F.O.M.)

$$\frac{df}{dt} \approx 2 \frac{GHz}{year} \left(\frac{5}{SNR}\right)^2 \left(\frac{0.2 K}{T_{sys}}\right)^2 \left(\frac{P_{a\gamma\gamma}}{1x10^{-22} W}\right)^2 \left(\frac{10^5}{Q_c}\right) \sim B_0^4 V^2 C^2 Q_c T_{sys}^{-2}$$

Cavity haloscope – in a nutshell

• High scanning rate by improving experimental parameters

Microwave signal detection

40

SPD schemes

	Excitation	Intereference	Bolometer
Basis	Qubit	JJ-Qubit	JJ-TES
Quantity	Electron	Phase	Heat
Pros	High sensitivity	Non-demolition	Wide bandwith Robust
Cons	Bandwidth vs. Dark cout rate Low tunability	Narrow bandwidth Low tunability	<i>High noise level</i> Dead (relaxation) time

Low temperature Axion Chiral Magnetic Effect

Axionic chiral magnetic effect

Minimal energy loss under a high magnetic field

High-quality factor

High-Temperature Superconductor (HTS)

ReBCO HTS

Biaxially-textured 2D tapes (commercially available)

GdBCO HTS tape

Assembly

3D SC cavity

Searches for Axions and ALPs

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

(d) (d) (e) (f) (f) (f) (f) (f) (f) (f) (f					
	1 st Gen.	2 nd Gen.	3 rd (Gen.	4 th Gen.
Material	YBCO	Gd BCO	Eu BCC) + APC	Eu BCO + APC
Manufacturer	AMSC	Theva	Fujikura		Fujikura
Volume [L]	0.3	1.5	1.5	0.2	37
Freq. [GHz]	6.9	2.3	2.2	5.4	1.2
Q @ 8 T	0.33 M	0.5 M	3.5 M	13 M	1.1 M
Application	Demostration	Axion search	AQN search	Axion search	Axion search

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Flux-driven Josephson parametric amplifiers (JPAs)

Quantum amplification

U. of Tokyo & RIKEN

Quantum amplification $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

TUTE OF SCIE

Flux-driven Josephson parametric amplifiers (JPAs)

U. of Tokyo & RIKEN

• Flux-driven Josephson parametric amplifiers (JPAs)

Quantum amplification $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Parallel-Serial configuration

But, ... limited bandwidth!

U. of Tokyo & RIKEN