Spinning Light: Searching for Axion Dark Matter with Magnetic Haloscopes

Asher Berlin, <u>Alex Millar</u>, Tanner Trickle and Kevin Zhou arXiv:2312.11601

Outline

- Axion-electron interactions
- Mechanical Forces
- Absorption
- Electric Dipole Moments
- Magnetic Haloscopes

- Solution to the Strong CP problem: make θ a dynamical field so it can minimise the energy and send θ to zero
- Need a new anomalous U(1) chiral symmetry (Peccei-Quinn), which is broken at high temperature $\sim f_a$ (around 10¹² GeV)

Axions

 $\mathscr{L}_{\text{stand mod} + axion} = \dots + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a$ $+ \frac{g^2}{32\pi^2} \frac{a(x)}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$

- The "axion" is the angular degree of freedom: goldstone mode!
- At the QCD scale the potential tilts as the axion acquires a mass – axion rolls down to a CP conserving minimum
- Can be produced by misalignment or topological defects

Axions

 $\Theta = 0$

Axion DM: Scenario 1

- Scenario 1: PQ broken after inflation
- θ_i has random values in every casual region, with the dark matter density determined by the average
- Topological defects such as strings and domain walls exist in the early universe

Axion DM: Scenario 2

- Scenario 2: PQ broken before inflation
- θ_i has a single random value which determines the dark matter density
- No topological defects

Axion Production Mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

Axion Production Mechanisms

Vacuum Misalignment

Alex Millar

Decay of topological defects

arXiv:1809.09241

How Do You Find a Wave?

- Can't just look for scatterings
- Exploit the coherence of the field to increase the signal
- Analogue: finding the right radio station
- Currently in an experimental boom: lots of new ideas and experiments

10

Axion Interactions

Magnetic Field Axion Photon

Coupling to electromagnetism

Alex Millar

• Lots of details depend on the model but we will only talk about two interactions

Axion Interactions

$$L_{\text{int}} \supset g_{a\gamma} a \mathbf{E} \cdot \mathbf{B} + g_{af} (\partial_{\mu} a) \, \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi ,$$

Coupling to electromagnetism

- Lots of details depend on the model but we will only focus on two interactions
 - Coupling to matter (mostly spin)

12

Non-relativistic Hamiltonian

- starts with there can be non-trivial operator redefinitions
- Lowest order terms

$$H \supset -g_{af} (
abla a) \cdot \boldsymbol{\sigma} - rac{g_{af}}{m_f} \dot{a} \, \boldsymbol{\sigma} \cdot \boldsymbol{\pi} \; ,$$

Wind Axio-electric $\boldsymbol{\pi} \equiv \mathbf{p} - q_f \mathbf{A}$

Alex Millar

• Need to be very careful and self consistent, depending on which Lagrangian one

13

Axion-Induced Torques

- Most well known effect of axion-fermion couplings
- Acts on spins similarly to a B-field

$$\frac{d}{dt} \langle \mathbf{S} \rangle = \langle 2 \,\mu_f \, \mathbf{S} \times \mathbf{B} + 2g_{af} \, \mathbf{S} \times (\nabla a + \dot{a} \, \mathbf{v}) \, \rangle$$
$$\mathbf{B}_{\text{eff}} = (g_{af}/\mu_f) \, (\nabla a + \dot{a} \, \langle \mathbf{v} \rangle)$$

 $\mathbf{O}\mathbf{\Pi}$

Alex Millar

,

- Most exploited fermion coupling
- Can use nuclear magnetic resonance techniques
- Includes CASPER WIND and ferromagnet haloscopes like QUAX
- Tends to be most important for low axion masses

Axion-Induced Forces

- How does the axio-electric term act on the electron?
- Need to generalize the Lorentz force law

$$\mathbf{F} \equiv m_f \, \frac{d\mathbf{v}}{dt} \simeq q \, \mathbf{E} + q \, (\mathbf{v} \times \mathbf{B}) + \mu_f \, (\boldsymbol{\sigma} \cdot \mathbf{B}) - \frac{g_{af} \, \frac{d}{dt} \, (\dot{a} \, \boldsymbol{\sigma})}{\mathbf{f}}$$
$$\mathbf{E}_{\text{eff}} \simeq -(g_{af}/q) \, \frac{d}{dt} \, (\dot{a} \boldsymbol{\sigma})$$

16

Axion-Induced Forces

- This looks like an E-field, but it couples to spin rather than to charge • Spin polarized case not well studied in the literature!

17

Mechanical Forces

- Axio-electric term accelerates electrons
- What about bulk motion?
- Can use mechanical detectors like torsion balances to search for accelerations of spinpolarised materials
- Doesn't seem to be competitive

$$\Delta a_{af} \simeq \frac{g_{af} \,\omega_{\text{sig}} \sqrt{\rho_{\text{DM}}}}{m_n} \,\frac{2f_s}{A}$$

arXiv:1512.06165

Mechanical Forces

19

Absorption

- More generally one can consider the absorption of an axion
- What if the system is polarized or magnetic?
- Can solve for the total losses of the axion field from the EOM
- Imaginary part of ω gives the energy lost by the axion
- Only comes from medium losses

$$(\partial^{2} + m_{a}^{2}) a = -g_{ae} \left(\partial_{t} j_{\sigma} + \nabla \cdot \mathbf{n}_{\sigma}\right)$$
$$\partial_{t} E_{\text{eff}} + (\varepsilon_{\sigma e} - 1) \partial_{t} \langle \mathbf{E} \cdot \hat{\mathbf{s}} \rangle$$
Axio-electric Wind

$$(\partial^2 + m_a^2) a = -g_{ae} \left(\partial_t j_\sigma + \nabla \cdot \mathbf{n}_\sigma \right)$$

$$e j_\sigma = (\varepsilon - 1) \partial_t E_{\text{eff}} + (\varepsilon_{\sigma e} - 1) \partial_t \langle \mathbf{E} \cdot \hat{\mathbf{s}} \rangle$$

$$f \qquad f$$

$$\text{Axio-electric} \quad \text{Wind}$$

Alex Mi

20

Absorption: Axio-Electric

- Polarized targets haven't been considered before!
- Two advantages
- Can spin polarize a system to remove background
- Absorption higher on resonances

Alex Millar

 $R \simeq \frac{g_{ae}^2 m_a^2}{e^2} \frac{\rho_{\rm DM}}{\rho_{\rm det}} \times \begin{cases} 3 \, {\rm Im} \left[\varepsilon(m_a) \right] & \text{(unpolarized target)} \\ {\rm Im} \left[\frac{-1}{\varepsilon(m_a)} \right] & \text{(polarized target)} \end{cases},$

21

Absorption: Wind

- Axion absorption onto magnons is not new (arXiv:2005.10256)
- Only been done from first principles calculations
- More generally one can just consider an arbitrary magnetized medium
- Magnetic equivalent of the "energy loss function"

$$R \simeq \left(\frac{g_{ae} \, v_{\rm \tiny DM}}{\mu_B}\right)^2 \, \frac{\rho_{\rm \tiny DM}}{\rho_{\rm det}} \, {\rm Im}\!\left[\frac{-1}{\mu}\right] \,, \label{eq:R_exp}$$

• Anything with μ close to zero may be an interesting detector!

22

Quasiparticle Haloscopes

- Resonances in epsilon have been exploited in the photon coupling for EM readout
- Plasma haloscopes, TOORAD, phonon-polaritons...
- Im[-1/ ϵ] and Im[-1/ μ] dependence should allow for similar devices
- I.e., spin polarized plasma haloscopes or QUAX

23

Spurious EDMs

- You can do a field redefinition to get

$$\mathscr{L} \supset -2 m_f g_{af} a \overline{\Psi} i \gamma^5 \Psi.$$
Looks like EDM
$$\int_{f_{n_f}} \mathbf{B} \cdot \boldsymbol{\sigma} - g_{af} (\nabla a) \cdot \boldsymbol{\sigma} - \frac{g_{af}}{4m_f} \{\dot{a}, \boldsymbol{\pi} \cdot \boldsymbol{\sigma}\} + \frac{q_f g_{af}}{2m_f} a \mathbf{E} \cdot \boldsymbol{\sigma}$$

$$\begin{split} \mathscr{L} \supset -2 \, m_f \, g_{af} \, a \, \overline{\Psi} i \gamma^5 \Psi. \\ \text{With non-relativistic Hamiltonian} \\ H_{\text{alt}} \simeq \frac{\pi^2}{2m_f} + q_f \, \phi - \frac{q_f}{2m_f} \, \mathbf{B} \cdot \boldsymbol{\sigma} - g_{af} \, (\nabla a) \cdot \boldsymbol{\sigma} - \frac{g_{af}}{4m_f} \left\{ \dot{a}, \boldsymbol{\pi} \cdot \boldsymbol{\sigma} \right\} + \frac{q_f \, g_{af}}{2m_f} \, a \, \mathbf{E} \cdot \boldsymbol{\sigma} \end{split}$$

• Often the axion induced electronic EDM is overestimated (or assumed constant).

24

Spurius EDMs

- But axion is derivatively coupled: can't have a constant EDM
- Actually the field redefinitions to get the non-relativistic Hamiltonian also redefine the position operator shifting the COM

$$\mathbf{x}_q = \mathbf{x}, \qquad \mathbf{x}'_q$$

- Doesn't reappear at higher order (unlike Schiff's theorem)
- Need to be very careful with non-relativistic derivations
- Actual EDMs are suppressed by $(m_a/m_e)^2$, see arXiv:1312.6667

$$= \mathbf{x} + (d/q) \, \boldsymbol{\sigma}$$

25

Electromagnetic Effects

- Effective E-field causes charges to move: generates a polarization!
- Effective B-field causes spins to torque: generates magnetization!

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{P}_a = (\varepsilon - 1) \mathbf{E} + (\varepsilon_{\sigma e} - 1) \mathbf{E}_{eff}$$
$$\mathbf{M} = \mathbf{M}_0 + \mathbf{M}_a = (1 - \mu^{-1}) \mathbf{B} + (1 - \mu^{-1}) \mathbf{B}_{eff}.$$

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{P}_a = (\varepsilon - 1) \mathbf{E} + (\varepsilon_{\sigma e} - 1) \mathbf{E}_{eff}$$
$$\mathbf{M} = \mathbf{M}_0 + \mathbf{M}_a = (1 - \mu^{-1}) \mathbf{B} + (1 - \mu^{-1}) \mathbf{B}_{eff}.$$

- Effective E-field requires a spin polarised sample (where both epsilons are almost equal)
- Effective magnetization requires magnetic materials

26

Axion Induced Currents

• New currents to source Maxwell equations

$$\mathbf{J}_a = \mathbf{J}_a^P + \mathbf{J}_a^M = (\varepsilon_{\sigma e} - 1)$$

- $\varepsilon_{\sigma e}$ is spin version of dielectric constant
- Generates a inhomogeneous wave equation

$$\nabla \times \nabla \times \mathbf{E} + \imath$$

 $) \partial_t \mathbf{E}_{\text{eff}} + \nabla \times \left((1 - \mu^{-1}) \mathbf{B}_{\text{eff}} \right)$

 $n^2 \,\partial_t^2 \mathbf{E} = -\mu \,\partial_t \mathbf{J}_a \;,$

Example: QUAX

- Small balls of YIG generate currents which ring up a cavity
- Hasn't been analyzed in the language of currents
- YIG has high Q but very hard to get large samples
- Most of the cavity is empty
- Requires near perfect samples
- What about other geometries or materials?

Alex Millar

arXiv:2001.08940

Axion-Electrodynamics

- Easiest to just think of the axion as modifying Maxwell equations
- External B-field \mathbf{B}_{e} induces small effective current
- Use the coherence to resonantly excite E-fields
- Induced E-fields depend on the medium

$$\nabla \cdot (\epsilon \mathbf{E}) \simeq \rho_f,$$

$$\nabla \times (\mathbf{B}/\mu) - \epsilon \dot{\mathbf{E}} \simeq \mathbf{J}_f + g_{a\gamma} \mathbf{B}_e \dot{a},$$

$$\nabla \cdot \mathbf{B} = 0,$$

$$\nabla \times \mathbf{E} + \dot{\mathbf{B}} = 0,$$

Looks like a current!

29

Dish Antenna

- E_a depends on the medium, so changing media causes a discontinuity (arXiv:1212.2970).
- EM won't tolerate discontinuities in the parallel E and H fields
- Regular EM waves are emitted to compensate
- No resonance!
- Completely broadband response

Dielectric Haloscopes

• Introduce a series of dielectric layers

Boundary radiation emitted from each slab •

Alex Millar

*** Magnetic Field Photon

31

Dielectric Haloscopes

- Idea from the photon coupling (Caldwell, Dvali, Majorovits, <u>AM</u>, Raffelt, Redondo, Reimann, Simon, Steffen, *Phys. Rev. Lett.* 118 (2017))
- Arrange layers for constructive interference
- Tune frequencies by controlling disk spacings
- Many disks = strong signals

Dielectric Haloscopes

- Two versions being pursued: movable disks, GHz version (MADMAX, DALI)
- Thin film optical version (MuDHI, LAMPOST)

Alex Millar

Stefan Knirck

Case One: Axio-Electric

• The effective E-field moves charges which generate a "real" E-field

- Can be discontinuous at boundaries!
- Details depend on how spin polarized the materials are

$$\mathbf{E} = \frac{1 - \varepsilon_{\sigma e}}{\varepsilon} \, \mathbf{E}_{\text{eff}}$$

34

Case One: Axio-Electric

- Spin polarized slab emits propagating radiation
- $g_{ae} \leftrightarrow g_{a\gamma\gamma} \left(e B_0 / m_a^2 \right)$
- Can directly map from the photon case • Tends to be best for optical frequencies

Spins

35

- No bulk currents! $\nabla \times \mathbf{B}_{\text{eff}} \propto \nabla \times (\nabla a/\mu)$
- Discontinuity in µ leads to boundary currents
- Doesn't directly map onto the photon coupling
- Better at lower frequencies

Case Two: Wind

- Full behavior needs a dedicated analysis
- Simple estimate extrapolated from N transparent slabs
- High frequency μ needs an applied B-field (Landau-Liftshitz-Gilbert equation)

$$1 - \mu^{-1} = -\frac{2\mu_B M_0 \omega_0}{\omega^2 - \omega_M^2 + i\omega \omega_M/Q_M}$$

 $\omega_0 \equiv 2\mu_B \left(H_0 + \beta M_0 \right) \; ,$

$$\omega_M \equiv \sqrt{\omega_0 \left(2\mu_B \, M_0 + \omega_0\right)}$$

37

- Can use larger size, lower Q materials than NMR
- Ferrites ideal!
- Magnon resonance tunable with B-field!
- Uses a solenoidal magnet
- Doesn't need large and high field at the same time

Magnetic Haloscope

• Introduce a series of magnetic layers

Boundary radiation emitted from each slab

Projections

- Axio-electric is easy: recast a high frequency haloscope like MuDHI or LAMPOST • Axion wind is better at lower frequencies
- For the wind term we assume a MADMAX-like setup ignoring O(1) factors and daily modulation

$$SNR \sim \sqrt{\frac{Q_a}{Q_M}} \frac{t_e}{m_a} \frac{\rho_{\rm DM} A}{T_n} N^{3/2} \left(\frac{g_{ae} v_{\rm DM} \eta}{\mu_B}\right)^2$$
$$\eta = \left|\frac{1-\mu^{-1}}{1+i\sqrt{\varepsilon/\mu} \cot\left(n m_a d/2\right)}\right|$$

$$\left| \frac{Q_a}{Q_M} \frac{t_e}{m_a} \frac{\rho_{\rm DM} A}{T_n} N^{3/2} \left(\frac{g_{ae} v_{\rm DM} \eta}{\mu_B} \right)^2 \right|$$

$$\eta = \left| \frac{1 - \mu^{-1}}{1 + i \sqrt{\varepsilon/\mu} \cot\left(n m_a d/2\right)} \right|$$

40

Alex Millar

Sensitivity

Conclusions

- Axion-fermion couplings still have lots to explore
- Absorption can just be related to ϵ and μ
- The language of currents allows for much more general experimental designs
- Need to be careful! Lots of spurious effects
- Magnetized dielectric haloscopes have interesting new phenomenology to explore

42

The Strong CP Problem D D

- The Strong force should violate time reversal symmetry!
- Governed by an angle θ
- In principle can be $\theta \in [0, 2\pi]$
- Should give a large electric dipole moment!
- Limit from neutron EDM is $\theta \lesssim 10^{-10}$

 θ =0 minimizes the vacuum energy, but θ is not a dynamical term \bullet

44

Axion Dark Matter

- Coherent oscillations persist as dark matter
- Much lighter than wimps: ~µeV
- Acts like a classical wave!
- Looking for dark matter is like tuning a radio to find the right station (axion mass)
- Lots of new experiment ideas!

Artwork by Sandbox Studio in Symmetry Magazine

