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Outline

• Axion-electron interactions


• Mechanical Forces


• Absorption


• Electric Dipole Moments


• Magnetic Haloscopes
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Axions

• Solution to the Strong CP problem: make θ a 
dynamical field so it can minimise the energy 
and send θ to zero 


• Need a new anomalous U(1) chiral symmetry 
(Peccei-Quinn), which is broken at high 
temperature ~fa (around 1012 GeV)
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Axions
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• The “axion” is the angular degree of 
freedom: goldstone mode!


• At the QCD scale the potential tilts 
as the axion acquires a mass – axion 
rolls down to a CP conserving 
minimum


• Can be produced by misalignment 
or topological defects



Alex Millar

Axion DM: Scenario 1

• Scenario 1: PQ broken after inflation 


• θi has random values in every casual 
region, with the dark matter density 
determined by the average


• Topological defects such as strings and 
domain walls exist in the early universe
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Axion DM: Scenario 2

• Scenario 2: PQ broken before 
inflation


• θi has a single random value which 
determines the dark matter density


• No topological defects
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Axion Production Mechanisms

 

 

 

Vacuum Misalignment Decay of topological defects

arXiv:1809.09241
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Axion Production Mechanisms

 

 

 

Vacuum Misalignment Decay of topological defects
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How Do You Find a Wave?

• Can’t just look for scatterings


• Exploit the coherence of the field to 
increase the signal


• Analogue: finding the right radio 
station


• Currently in an experimental boom: 
lots of new ideas and experiments 
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• Lots of details depend on the model but we will only talk about two interactions

Axion Interactions
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Axion Interactions

• Lots of details depend on the model but we will only focus on two interactions
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Coupling to electromagnetism 

Coupling to matter (mostly spin) 
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Non-relativistic Hamiltonian

• Need to be very careful and self consistent, depending on which Lagrangian one 
starts with there can be non-trivial operator redefinitions


• Lowest order terms
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Axion-Induced Torques

• Most well known effect of axion-fermion couplings


• Acts on spins similarly to a B-field
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Axion-Induced Torques

• Most exploited fermion coupling


• Can use nuclear magnetic resonance 
techniques


• Includes CASPER WIND and ferromagnet 
haloscopes like QUAX


• Tends to be most important for low axion 
masses
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Axion-Induced Forces

• How does the axio-electric term act on the electron? 


• Need to generalize the Lorentz force law
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Axion-Induced Forces

• This looks like an E-field, but it couples to spin rather than to charge


• Spin polarized case not well studied in the literature!
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Mechanical Forces

• Axio-electric term accelerates electrons


• What about bulk motion?


• Can use mechanical detectors like torsion 
balances to search for accelerations of spin-
polarised materials


• Doesn’t seem to be competitive 
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Mechanical Forces
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Absorption

• More generally one can consider the absorption of an axion 


• What if the system is polarized or magnetic?


• Can solve for the total losses of the axion field from the EOM 


• Imaginary part of ω gives the energy lost by the axion


• Only comes from medium losses 

20Axio-electric Wind
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Absorption: Axio-Electric

• Polarized targets haven’t been considered before!


• Two advantages


• Can spin polarize a system to remove background


• Absorption higher on resonances
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Absorption: Wind

• Axion absorption onto magnons is not new (arXiv:2005.10256)


• Only been done from first principles calculations


• More generally one can just consider an arbitrary magnetized medium


• Magnetic equivalent of the “energy loss function”


• Anything with μ close to zero may be an interesting detector!
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Quasiparticle Haloscopes

• Resonances in epsilon have been 
exploited in the photon coupling for 
EM readout


• Plasma haloscopes, TOORAD, 
phonon-polaritons… 


• Im[-1/ε] and Im[-1/μ] dependence 
should allow for similar devices


• I.e., spin polarized plasma 
haloscopes or QUAX
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Spurious EDMs

• Often the axion induced electronic EDM is overestimated (or assumed constant).


• You can do a field redefinition to get 


• With non-relativistic Hamiltonian 
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Spurius EDMs

• But axion is derivatively coupled: can’t have a constant EDM


• Actually the field redefinitions to get the non-relativistic Hamiltonian also redefine 
the position operator shifting the COM 


• Doesn’t reappear at higher order (unlike Schiff ’s theorem)


• Need to be very careful with non-relativistic derivations


• Actual EDMs are suppressed by (ma/me)2, see arXiv:1312.6667
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Electromagnetic Effects

• Effective E-field causes charges to move: generates a polarization!


• Effective B-field causes spins to torque: generates magnetization!


• Effective E-field requires a spin polarised sample (where both epsilons are almost 
equal)


• Effective magnetization requires magnetic materials
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Axion Induced Currents

• New currents to source Maxwell equations


•  is spin version of dielectric constant


• Generates a inhomogeneous wave equation

εσe
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Example: QUAX

• Small balls of YIG generate currents which 
ring up a cavity


• Hasn’t been analyzed in the language of 
currents


• YIG has high Q but very hard to get large 
samples


• Most of the cavity is empty


• Requires near perfect samples


• What about other geometries or materials?
28
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Axion-Electrodynamics
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• Easiest to just think of the axion as 
modifying Maxwell equations


• External B-field  induces small 
effective current


• Use the coherence to resonantly 
excite E-fields


• Induced E-fields depend on the 
medium

Be

Looks like a current!
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Dish Antenna

• Ea depends on the medium, so changing 
media causes  a discontinuity 
(arXiv:1212.2970). 


• EM won’t tolerate discontinuities in the 
parallel E and H fields


• Regular EM waves are emitted to 
compensate


• No resonance! 


• Completely broadband response
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Dielectric Haloscopes

• Introduce a series of dielectric layers


• Boundary radiation emitted from each slab
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Dielectric Haloscopes

• Idea from the photon coupling (Caldwell, Dvali, 
Majorovits, AM, Raffelt, Redondo, Reimann, 
Simon, Steffen, Phys. Rev. Lett. 118 (2017))


• Arrange layers for constructive interference


• Tune frequencies by controlling disk spacings


• Many disks = strong signals
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Dielectric Haloscopes

• Two versions being pursued: movable disks, GHz version (MADMAX, DALI)


• Thin film optical version (MuDHI, LAMPOST)
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Case One: Axio-Electric

• The effective E-field moves charges which generate a “real” E-field


• Can be discontinuous at boundaries! 


• Details depend on how spin polarized the materials are
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Case One: Axio-Electric

• Spin polarized slab emits propagating radiation


• Can directly map from the photon case


• Tends to be best for optical frequencies
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Case Two: Wind

• No bulk currents!   



• Discontinuity in μ leads to boundary 
currents 


• Doesn’t directly map onto the 
photon coupling


• Better at lower frequencies

∇ × Beff ∝ ∇ × (∇a/μ)
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Case Two: Wind

• Full behavior needs a dedicated analysis


• Simple estimate extrapolated from N transparent slabs


• High frequency μ needs an applied B-field (Landau-Liftshitz-Gilbert equation)
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Case Two: Wind

• Can use larger size, lower Q materials than NMR


• Ferrites ideal!


• Magnon resonance tunable with B-field!


• Uses a solenoidal magnet 


• Doesn’t need large and high field at the same 
time
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Magnetic Haloscope

• Introduce a series of magnetic layers


• Boundary radiation emitted from each slab
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Projections

• Axio-electric is easy: recast a high frequency haloscope like MuDHI or LAMPOST


• Axion wind is better at lower frequencies


• For the wind term we assume a MADMAX-like setup ignoring O(1) factors and daily 
modulation
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Sensitivity
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Conclusions

• Axion-fermion couplings still have lots to explore


• Absorption can just be related to  and 


• The language of currents allows for much more general experimental designs


• Need to be careful! Lots of spurious effects


• Magnetized dielectric haloscopes have interesting new phenomenology to explore

ϵ μ
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The Strong CP Problem

• The Strong force should violate time 
reversal symmetry! 


• Governed by an angle 


• In principle can be 


• Should give a large electric dipole 
moment!


• Limit from neutron EDM is 

θ

θ ∈ [0,2π]

θ ≲ 10−10
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Strong CP problem

    

 

Equivalent Equivalent

   

Λ4QCD

• θ=0 minimizes the vacuum energy, but θ is not a dynamical term
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Axion Dark Matter

• Coherent oscillations persist as dark 
matter


• Much lighter than wimps: ~µeV

• Acts like a classical wave!

• Looking for dark matter is like tuning a 

radio to find the right station (axion 
mass)


• Lots of new experiment ideas!
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