Axion DM Detection with Superconducting Qubits

Takeo Moroi (U. Tokyo)

Chen, Fukuda, Inada, TM, Nitta, Sichanugrist

arXiv 2212.03884 [PRL 131 (2023) 211001]

arXiv 2311.10413 [PRL 133 (2023) 021801]

arXiv 2407.19755

Dark World to Swampland: 9th IBS-IFT Workshop, Daejeon, Korea, '24.11.05

1. Introduction

Quantum technologies are rapidly developing

- Quantum computer is (probably) a primary driving force
- Many quantum devices are excellent quantum sensors, sensitive to external fields

(Transmon) Qubit

NV Center

Rydberg Atom

and more ...

Ion Trap

[All the pictures are from Wikipedia]

⇒ They can be (potentially) used to detect BSM physics

What I discuss today: Axion DM search with qubits

Qubit: Two-level quantum system

- Qubit is an essential component for quantum computers
- Various types of qubits have been proposed and realized
- Qubits are excellent quantum sensors for DM detection [Dixit et al. ('21); Chen, Fukuda, Inada, TM, Nitta, Sichanugrist ('22, '23, '24); Engelhardt, Bhoonah, Liu ('23); Chigusa, Hazumi, Herbschleb, Mizuochi, Nakayama ('23); Agrawal et al. ('23); Ito, Kitano, Nakano, Takai ('23); Braggio et al. ('24)]

Outline:

- 1. Introduction
- 2. Superconducting Qubit
- 3. DM Detection with Qubits
- 4. Experimental Status
- 5. Quantum Enhancement / Cavity Effect
- 6. Summary and Outlook

2. Superconducting Qubit

Superconducting qubit: Capacitor + Josephson junction (JJ)

 $\theta = \theta_B - \theta_A$: canonical variable of this system

$$\Rightarrow H_0 = \frac{1}{2C}Q^2 - J\cos\theta \simeq \frac{1}{2}\frac{C}{(2e)^2}\dot{\theta}^2 - J\cos\theta \iff Q = CV \simeq C\frac{\dot{\theta}}{2e}$$

Superconducting qubit has discrete energy levels

 $\Rightarrow |0\rangle$ and $|1\rangle$ can be used as $|g\rangle$ and $|e\rangle$, respectively

Frequency tunability with SQUID

SQUID: superconducting quantum interference device

$$\Rightarrow H_{\text{SQUID}} \simeq -2J\cos(e\Phi)\cos\theta \simeq J\cos(e\Phi)\theta^2 + \cdots$$

$$\Rightarrow \omega \simeq \sqrt{\frac{2J}{(2e)^{-2}C}\cos(e\Phi)}$$

Φ: magnetic flux going through the SQUID loop

Qubit developed by our colleagues (prototype)

- 2D object, fabricated on the surface of a substrate
- Operated with very low temperature $\sim O(10)~\mathrm{mK}$

Superconducting qubit couples to external electric field

Capacitor
$$\left\{\begin{array}{c|c} & +Q \\ \hline & +Q \\ \hline & -Q \end{array}\right\} \rightleftharpoons (ext) \Leftrightarrow H_{int} = QdE^{(ext)}$$

Charge operator in the transmon limit: $CJ \gg (2e)^2$

$$Q \simeq \frac{C}{2e}\dot{\theta} \simeq \sqrt{\frac{C\omega}{2}} \left(|g\rangle\langle e| + |e\rangle\langle g| \right)$$

 $|g\rangle\leftrightarrow|e\rangle$ transition occurs if DM field generates electric field

- Axion (with external magnetic field)
- Hidden photon

• • • •

3. DM Detection with Qubits

AC electric field due to oscillating DM field:

$$E^{(\mathrm{DM})} = \bar{E}\cos(m_X t + \alpha)$$
 with $m_X = \mathrm{DM}$ mass

Hamiltonian for qubit + DM system

$$H = \omega |e\rangle \langle e| - 2\eta \cos(m_X t + \alpha) (|e\rangle \langle g| + |g\rangle \langle e|)$$

$$\eta \simeq \frac{1}{2\sqrt{2}} d\sqrt{C\omega} \bar{E}$$

Schrödinger equation

$$i\frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle \implies |\psi(t)\rangle = U_{\rm DM}(t)|\psi(0)\rangle$$

$$|\psi(t)\rangle \equiv \psi_g(t)|g\rangle + e^{-i\omega t}\psi_e(t)|e\rangle$$

Resonance limit $\omega = m_X$ (for $\eta t \ll 1$)

$$\begin{pmatrix} \psi_g(t) \\ \psi_e(t) \end{pmatrix} = U_{\rm DM}(t) \begin{pmatrix} \psi_g(0) \\ \psi_e(0) \end{pmatrix} \simeq \begin{pmatrix} 1 & ie^{-i\alpha}\eta t \\ ie^{i\alpha}\eta t & 1 \end{pmatrix} \begin{pmatrix} \psi_g(0) \\ \psi_e(0) \end{pmatrix}$$

 $|g\rangle \rightarrow |e\rangle$ transition probability (assuming $|\psi(0)\rangle = |g\rangle$)

$$|\psi_e(t)|^2 \simeq \begin{cases} \eta^2 t^2 & : \omega = m_X \text{ (on-resonance)} \\ \sim \eta^2 (\omega - m_X)^{-2} & : \omega \neq m_X \text{ (off-resonance)} \end{cases}$$

Excitation can be the signal of wave-like DM

- When $\omega \simeq m_X$, the transition rate is proportional to t^2
 - \Rightarrow We should take t as long as the coherence time τ
- DM mass is unknown, so we should scan the frequency

Search strategy (with frequency-tunable SQUID qubits)

- For fixed ω , repeat the measurement cycle (reset, wait, and readout) as many time as possible
- Scan the qubit frequency ω

One of possible targets: hidden photon X_{μ}

$$\mathcal{L} \ni -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\epsilon F_{\mu\nu}X^{\mu\nu} + \frac{1}{2}m_X^2 X_{\mu}X^{\mu}$$

 $F_{\mu\nu}$: EM field

Hidden photon DM induces effective electric field

$$\vec{X} \simeq \bar{X}\vec{n}\sin(m_X t + \alpha)$$
 with $\rho_{\rm DM} = \frac{1}{2}m_X^2\bar{X}^2$

$$\vec{E}^{(\mathrm{DM})} = -\epsilon \dot{\vec{X}} = -\epsilon \, m_X \bar{X} \, \vec{n} \cos(m_X t + \alpha) \iff |\vec{E}^{(\mathrm{DM})}| = \epsilon \sqrt{2\rho_{\mathrm{DM}}}$$

Hidden photon DM: 1 year frequency scan ($1 \le f \le 10 \text{ GHz}$)

- $d = 100 \ \mu \text{m}$
- C = 0.1 pF• $Q = 10^6$
- Error rate / qubit = 0.1 %

 \Leftrightarrow For C = 0.1 pF and $d = 100 \ \mu m$:

$$p_{g \to e} \simeq 0.1 \times \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{f}{1 \text{ GHz}}\right) \left(\frac{\tau}{100 \mu \text{s}}\right)^2$$

Axion DM detection with qubits

Magnetic field is necessary to convert axion to electric field

$$\mathcal{L}_{\text{int}} = g_{a\gamma\gamma} a \vec{E} \vec{B} \implies \vec{E} \simeq g_{a\gamma\gamma} a \langle \vec{B}^{(\text{ext})} \rangle$$

Magnetic field onto the superconductor may be a concern

- Transmon qubit is fabricated on the surface of Si substrate (2D object)
- Transmon qubit works with magnetic field of ~ 1 T, if the magnetic field is parallel to the surface [Krause et al., 2111.01115]
 - ⇔ More detailed study is underway

Axion DM search: 1-year scan

 \Leftrightarrow For C=0.1 pF and $d=100~\mu\mathrm{m}$:

$$p_{g\to e} \simeq 0.1 \times \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \left(\frac{m_a}{1 \,\mu\text{eV}}\right)^{-1} \left(\frac{B}{1 \,\text{T}}\right)^2 \left(\frac{\tau}{100 \,\mu\text{s}}\right)^2$$

4. Experimental Status

Now, our real search experiment is in progress

"DarQ" Collaboration: Dark matter hunting with Qubits

Ex.: <u>Watanabe</u>, Chen, Iiyama, Inada, Nakazono, Nitta, Noguchi, Sawada, Shirai, Terashi

Th.: Fukuda, TM, Sichanugrist

- Qubit development is underway
 - \Rightarrow Currently, $\tau_{\rm q} \sim O(1-10) \ \mu{\rm sec}$
 - \Rightarrow We hope to realize $\tau_{\rm q} \gtrsim O(100)~\mu{\rm sec}$
- The first (pilot) run was performed this summer
 - \Rightarrow We hope to finish the analysis soon

Preliminary results from 2024 summer

⇒ Next run will probably happen within this year

5. Quantum Enhancement / Cavity Effect

Signal rate can be $O(N_q^2)$ with quantum operations

We may perform quantum operations onto qubits

⇒ "DM detection with quantum computers"

 $U_{\rm DM}$ induces pure phase rotation of its eigenstates

E.g. for
$$\alpha = 0$$
: $U_{\rm DM} \simeq \begin{pmatrix} \cos \delta & i \sin \delta \\ i \sin \delta & \cos \delta \end{pmatrix}$ with $\delta \equiv \eta \tau$

$$\Rightarrow U_{\rm DM} |\pm\rangle = e^{\pm i\delta} |\pm\rangle \quad \text{with} \quad |\pm\rangle \equiv \frac{1}{\sqrt{2}} (|g\rangle \pm |e\rangle)$$

$$\Rightarrow U_{\rm DM}^{\otimes N_{\rm q}} |\pm\rangle^{\otimes N_{\rm q}} = e^{\pm iN_{\rm q}\delta} |\pm\rangle^{\otimes N_{\rm q}}$$

We can design the following quantum (unitary) operation

$$U_{\text{GHZ}}: \left(\begin{array}{c} |g\rangle^{\otimes N_{\text{q}}} \\ |e\rangle^{\otimes N_{\text{q}}} \end{array}\right) \to \frac{1}{\sqrt{2}} \left(\begin{array}{c} |+\rangle^{\otimes N_{\text{q}}} + |-\rangle^{\otimes N_{\text{q}}} \\ |+\rangle^{\otimes N_{\text{q}}} - |-\rangle^{\otimes N_{\text{q}}} \end{array}\right)$$

Starting with $|g\rangle^{\otimes N_q}$:

1. Apply
$$U_{\text{GHZ}}$$
: $\frac{1}{\sqrt{2}} \left(|+\rangle^{\otimes N_{\text{q}}} + |-\rangle^{\otimes N_{\text{q}}} \right)$

2. Evolution with DM:
$$\frac{1}{\sqrt{2}} \left(e^{iN_{\mathbf{q}}\delta} |+\rangle^{\otimes N_{\mathbf{q}}} + e^{-iN_{\mathbf{q}}\delta} |-\rangle^{\otimes N_{\mathbf{q}}} \right)$$

3. Apply
$$U_{\text{GHZ}}^{-1}$$
: $\cos N_{\mathbf{q}} \delta |g\rangle^{\otimes N_{\mathbf{q}}} + i \sin N_{\mathbf{q}} \delta |e\rangle^{\otimes N_{\mathbf{q}}}$

Transition probability:

$$p_{g \to e} = \sin^2 N_{\rm q} \delta \simeq N_{\rm q}^2 \delta^2 \quad \Rightarrow \quad \frac{S}{\sqrt{B}} \propto N_{\rm q}^{3/2} \delta^2$$

Axion DM search: 1-year scan with the entangled state

- We need reliable quantum gates
- Frequencies of all the qubits should be equal

Axion DM search: 1-year scan with the entangled state

Signal rate can be enhanced with cavity effect

⇔ Qubits are usually set in a "cavity"

Effective electric field:
$$\vec{E}^{(\text{eff})} \equiv \vec{E}^{(\text{DM})} + \vec{E}^{(\text{EM})} \equiv \kappa \vec{E}^{(\text{DM})}$$

$$\Box \vec{E}^{(\mathrm{EM})} = 0$$
 and $\vec{\nabla} \vec{E}^{(\mathrm{EM})} = 0$

$$[\vec{E}_{\parallel}^{(\mathrm{EM})} + \vec{E}_{\parallel}^{(\mathrm{DM})}]_{\mathrm{wall}} = 0 \quad \Leftrightarrow \quad \vec{E}_{\parallel}^{(\mathrm{eff})} = 0 \text{ at the cavity wall}$$

$$\Rightarrow H_{\rm int} = QdE^{\rm (eff)}$$

$$\Rightarrow p_{g \to e} \propto \kappa^2$$

 $\Rightarrow \kappa \gg 1$, if $m_{\rm DM}$ is close to one of cavity frequencies

Axion DM search: with fixed cavity geometry (cylinder)

•
$$B = 5 \text{ T}$$

•
$$N_{\rm q} = 1$$

• Error rate / qubit = 0.1 %

Axion DM search: with frequency-tunable cavity

 \Rightarrow In order to always realize $|\kappa| \gg 1$, cavity frequency should be tuned during the frequency scan

6. Summary and Outlook

Superconducting qubit is an excellent DM detector

We may reach parameter region which is unexplored

The real experiment has been started

- We need to fabricate high-quality qubit
- First run was performed this summer
- Effects of the magnetic field is under study (for axion DM detection)
- We hope to announce the first result soon, so stay tuned!

Backup: Hidden Photon DM

Case of hidden photon X_{μ}

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} \epsilon F'_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X_{\mu} X^{\mu}$$

 $F'_{\mu\nu}$: EM field (in gauge eigenstate)

Vector bosons in the mass eigenstates

$$A_{\mu} \simeq A'_{\mu} - \epsilon X_{\mu}$$
 and X_{μ}

Interaction with electron

$$\mathcal{L}_{\text{int}} = e \bar{\psi}_e \gamma^{\mu} A'_{\mu} \psi_e = e \bar{\psi} \gamma^{\mu} \psi (A_{\mu} + \epsilon X_{\mu})$$

Hidden photon as dark matter

$$\vec{X} \simeq \bar{X}\vec{n}_X \cos m_X t$$

Energy density of hidden photon DM

$$\rho_{\rm DM} = \frac{1}{2}\vec{\dot{X}}^2 + \frac{1}{2}m_X^2\vec{X}^2 \simeq \frac{1}{2}m_X^2\bar{X}^2$$

$$\Leftrightarrow \rho_{\rm DM} \sim 0.45 \; {\rm GeV/cm^3}$$

Effective electric field induced by the hidden photon

$$\vec{E}^{(X)} = -\epsilon \dot{\vec{X}} = \bar{E}^{(X)} \vec{n}_X \sin m_X t$$

$$\bar{E}^{(X)} = \epsilon m_X \bar{X} = \epsilon \sqrt{2\rho_{\rm DM}}$$

Backup: Transmon Qubit

Hamiltonian

$$H_0 = \frac{1}{2C}Q^2 - J\cos\theta = \frac{1}{2Z}n^2 - J\cos\theta$$
$$Z \equiv (2e)^{-2}C$$

Transmon limit: $CJ \gg (2e)^2 \Rightarrow \langle \theta^2 \rangle \ll 1$

[Koch et al. ('07); see also Roth, Ma & Chew (2106.11352)]

$$\Rightarrow H_0 = \frac{1}{2Z}n^2 + \frac{1}{2}J\theta^2 + O(\theta^4)$$

$$\hat{a} \equiv \frac{1}{\sqrt{2\omega Z}}(n - i\omega Z\theta), \quad \hat{a}^{\dagger} \equiv \frac{1}{\sqrt{2\omega Z}}(n + i\omega Z\theta)$$

$$\Rightarrow [\hat{a}, \hat{a}^{\dagger}] = 1$$

In the transmon limit, anharmonicity is small:

$$\Rightarrow |e\rangle \simeq \hat{a}^{\dagger}|g\rangle$$

$$\Rightarrow \omega_{21} \simeq \left(1 - \frac{1}{8} \frac{2e}{\sqrt{CJ}}\right) \omega$$

Charge operator in the transmon limit

$$Q = 2en = \sqrt{\frac{C\omega}{2}} \left(\hat{a} + \hat{a}^{\dagger} \right) \simeq \sqrt{\frac{C\omega}{2}} \left(|g\rangle\langle e| + |e\rangle\langle g| \right)$$

Interaction Hamiltonian

$$H_{\rm int} = QdE^{\rm (ext)} \simeq \sqrt{\frac{C\omega}{2}} dE^{\rm (ext)} (|g\rangle\langle e| + |e\rangle\langle g|)$$

Backup: Schrödinger Equation

Effective Hamiltonian

$$H = \omega |e\rangle \langle e| + 2\eta \sin m_X t (|e\rangle \langle g| + |g\rangle \langle e|)$$

 η : Small parameter

Schrödinger equation:

$$i\frac{d}{dt}|\Psi(t)\rangle = H|\Psi(t)\rangle$$

$$|\Psi(t)\rangle \equiv \psi_g(t)|g\rangle + e^{-i\omega t}\psi_e(t)|e\rangle$$

$$\Rightarrow i \frac{d}{dt} \begin{pmatrix} \psi_g \\ \psi_e \end{pmatrix} = 2\eta \sin m_X t \begin{pmatrix} 0 & e^{-i\omega t} \\ e^{i\omega t} & 0 \end{pmatrix} \begin{pmatrix} \psi_g \\ \psi_e \end{pmatrix}$$

Solution with $|\Psi(0)\rangle = |g\rangle$ (for $|\omega \pm m_X|^{-1} \ll t \ll \eta^{-1}$)

$$\psi_g(t) \simeq 1 + O(\eta^2)$$

$$\psi_e(t) \simeq \eta \left(\frac{e^{i(\omega - m_X)t} - 1}{i(\omega - m_X)} - \frac{e^{i(\omega + m_X)t} - 1}{i(\omega + m_X)} \right)$$

Resonance limit: $\omega \to m_X$

$$\Rightarrow \psi_e(t) \rightarrow \eta t + (\text{non-growing})$$

$$|g\rangle \rightarrow |e\rangle$$
 transition rate (for $t \ll \eta^{-1}$)

$$P_{ge} = |\psi_e(t)|^2 \simeq \begin{cases} \sim \eta^2 (\omega - m_X)^{-2} &: \omega \neq m_X \\ \eta^2 t^2 &: \omega = m_X \end{cases}$$

Backup: Frequency Scan

Frequency scan

Frequency scan is possible with qubit consisting of SQUID and capacitor

SQUID: superconducting quantum interference device

- Quantum device sensitive to magnetic flux
- With SQUID, the qubit frequency ω can be changed

SQUID

Loop-shaped superconductors separated by insulating layers

• We consider the case with external magnetic flux Φ going through the loop

Phases in the presence of magnetic flux

$$\theta_C - \theta_A = (2e) \int_{A \to C} \vec{A}(\vec{x}) \, d\vec{x}$$

$$\theta_B - \theta_D = (2e) \int_{D \to B} \vec{A}(\vec{x}) d\vec{x}$$

$$\theta_{BA} - \theta_{DC} = (2e) \oint \vec{A}(\vec{x}) d\vec{x} = (2e) \Phi = \frac{2\pi}{\Phi_0} \Phi$$

$$\theta_{YX} = \theta_Y - \theta_X$$

 $\Phi_0 = \frac{h}{2e}$: magnetic flux quantum

Define: $\theta \equiv (\theta_{BA} + \theta_{DC})/2$

$$H_{\text{SQUID}} \simeq -J\left(\cos\theta_{BA} + \cos\theta_{DC}\right) = -2J\cos(e\Phi)\cos\theta$$

Based on the previous analysis with $J \to 2J\cos(e\Phi)$

$$\omega \simeq \sqrt{\frac{2J}{Z}\cos(e\Phi)}$$

$$Z = (2e)^{-2}C$$

The excitation energy depends on Φ

⇒ Frequency scan is possible with varying the external magnetic field

Backup: Quantum Circuit

Basic unitary operations (quantum gates)

• Z gate

$$Z = |g\rangle\langle g| - |e\rangle\langle e| \implies |+\rangle \xrightarrow{Z} |-\rangle \text{ with } |\pm\rangle \equiv \frac{1}{\sqrt{2}} (|g\rangle \pm |e\rangle)$$

Hadamard gate

$$H = |+\rangle\langle g| + |-\rangle\langle e| \Rightarrow |g\rangle \xrightarrow{H} |+\rangle, |e\rangle \xrightarrow{H} |-\rangle$$

Controlled Z gate

$$CZ = |0\rangle\langle 0| \otimes \mathbf{1} + |1\rangle\langle 1| \otimes Z$$

$$\Rightarrow \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |+\rangle \xrightarrow{CZ} \frac{1}{\sqrt{2}} |0\rangle \otimes |+\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |-\rangle$$

The above is an example of the quantum circuit

 \Rightarrow Let us first see how it works when $\alpha = 0$

$$|\Psi(t_0)\rangle = |+\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} = \frac{1}{\sqrt{2}}|0\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} + \frac{1}{\sqrt{2}}|1\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}}$$

$$|\Psi(t_1)\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} + \frac{1}{\sqrt{2}}|1\rangle \otimes |-\rangle^{\otimes N_{\mathbf{q}}}$$

$$|\Psi(t_2)\rangle = \frac{1}{\sqrt{2}} e^{iN_{\mathbf{q}}\delta} |0\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} + \frac{1}{\sqrt{2}} e^{-iN_{\mathbf{q}}\delta} |1\rangle \otimes |-\rangle^{\otimes N_{\mathbf{q}}}$$

$$|\Psi(t_3)\rangle = \frac{1}{\sqrt{2}} e^{iN_{q}\delta} |0\rangle \otimes |+\rangle^{\otimes N_{q}} + \frac{1}{\sqrt{2}} e^{-iN_{q}\delta} |1\rangle \otimes |+\rangle^{\otimes N_{q}}$$
$$= \left(\cos N_{q}\delta |+\rangle + i\sin N_{q}\delta |-\rangle\right) \otimes |+\rangle^{\otimes N_{q}}$$

$$|\Psi(t_{\rm f})\rangle = (\cos N_{\rm q}\delta |0\rangle + i\sin N_{\rm q}\delta |1\rangle) \otimes |+\rangle^{\otimes N_{\rm q}}$$

 \Rightarrow Ancilla qubit can be excited: $P_{0\to 1} \simeq \sin^2 N_q \delta \simeq N_q^2 \delta^2$

The phase α is unknown in the actual search, but...

$$P_{0\to 1} \simeq N_{\rm q}^2 \delta^2 \cos^2 \alpha \to \frac{1}{2} N_{\rm q}^2 \delta^2$$

- \Rightarrow Signal rate can be of $O(N_q^2)$
- \Rightarrow The number of gate operation can be $O(N_{\rm q})$

Circuit only with nearest neighbor interactions

 \Rightarrow (# of gates) $\sim O(N_{\rm q})$

CNOT (Controlled-NOT) = $|g\rangle\langle g|\otimes 1 + |e\rangle\langle e|\otimes X$

- \Rightarrow (# of signals) $\sim O(N_{\rm q}^2)$
- \Rightarrow (# of errors & noises) $\sim O(N_{\rm q}) \ll$ (# of signals), for $N_{\rm q} \gg 1$