New insights on light and heavy axions -From Condensed Matter to Big Bang-Nov 6, 2024 Kohsaku Tobioka [Tobi] Florida State University, KEK Theory center

Dark World to **Swampland 2024** The 9th IBS-IFT Workshop

November 5-14, 2024 CTPU Seminar Room, IBS Theory Building (4F) Daejeon, Korea

K. Fridell, M.Ghosh, Y. Hamada, KT (in pareparation) TH Jung, T. Okui, KT, J. Wang (in pareparation)

Before start...

Degeneracy in Florida

State Capital P. Dirac

P. Sikivie

Strong CP problem and QCD Axion

The strong CP problem

- The unknown of the SM: CP phase in the strong sector
- Neutron EDM sets a very stringent upper bound: $\bar{\theta} \lesssim 10^{-10}$

QCD Axion solution

- Promote θ to a field a/f_a dynamically settles the CP phase to the minimum.
- Peccei-Quinn symmetry: Global U(1) that generates the axion as a Nambu-Goldstone boson. f_a is the breaking scale.
- Attractive **dark matter** candidate, typically ma<meV.

 $\frac{\alpha_s\bar{\theta}}{8\pi}G^{a\mu\nu}\tilde{G}^{a\mu\nu}$

Two topics on axion

- Light (dark matter) axion couple to electrons [see A.Millar's talk]

 - -> Inspired by the superconducting qubit work [T.Moroi's "DarQ" talk] -> Systematic connection from HEP to CM systems not established

- Heavy axion that decay to hadrons (π , K, Baryon \rightarrow ma>400MeV), BBN:Neutron decoupling measured by 4He is significantly affected.
 - ->The probing lifetime $\tau_a \sim 0.02 \text{ sec}$ is much shorter than $t_{BBN} \sim 1 \text{ sec}$.

Axion DM coupling to electrons

Naive thought and confusions for me

If axion or bosonic DM couples to electron (at UV), it must change CM phenomena, such as Superconductivity at low E. **But how?**

Naively, order parameter modulates with DM e.g. $\Delta \rightarrow \Delta (1 + \#(a/f_a)^2)$ \rightarrow Josephson energy shift \rightarrow seen in Qubit?

Naive thought and confusions for me

If axion or bosonic DM couples to electron (at UV), it must change CM phenomena, such as Superconductivity at low E. **But how?**

Naively, order parameter modulates with \rightarrow Josephson energy shift \rightarrow seen in Quk

- How to take a NR limit with axion or other DM?
- How the PQ symmetry realized in NR? (PQ~Chiral transf, but chiral symmetry is very bad in NR)
- How the BCS theory is understood in particle language?
- How to convert fermion d.o.f. to a scalar dof (Cooper pair)?

h DM e.g.
$$\Delta \rightarrow \Delta \left(1 + \#(a/f_a)^2\right)$$

bit?

Axion-electron coupling down to Cooper pair

Usual relativistic Lagrangian $\mathscr{L}_{UV}(a, \psi_L, \psi_R)$

Foldy-Wouthuysen method [half fermion integrated out systematic 1/me expansion]

Non-relativistic EFT with light field $\mathscr{L}_{\text{NROED}}(\psi_l, a)$ (with axion, PQ symmetry?)

BCS theory for particle physicists $\mathscr{L}_{\text{NRQED}} + \mathscr{L}_{4\text{Fermi}}(\psi_l, a?)$

Hubbard-Stratonovich transformation

[fermion pair \rightarrow scalar Δ]

Cooper pair scalar theory $\mathscr{L}_{SC}(\Delta, a?)$ Order parameter (~symm breaking)

Axion-electron coupling down to Cooper pair

Usual relativistic Lagrangian $\mathscr{L}_{UV}(a, \psi_L, \psi_R)$

Foldy-Wouthuysen method [half fermion integrated out systematic 1/me expansion]

Non-relativistic EFT with light field $\mathscr{L}_{\text{NROED}}(\psi_l, a)$ (with axion, PQ symmetry?)

†This talk

Methods are not connected from UV to all the way CM

BCS theory for particle physicists $\mathscr{L}_{\text{NRQED}} + \mathscr{L}_{4\text{Fermi}}(\psi_l, a?)$

Hubbard-Stratonovich transformation [fermion pair \rightarrow scalar Δ]

Cooper pair scalar theory $\mathscr{L}_{SC}(\Delta, a?)$ Order parameter (~symm breaking)

NR limit with systematic 1/m_e expansion Goal: integrate out heavy dof→NR QED

 $\mathscr{L}_{\text{OED}} = \overline{\psi}(i\gamma^{\mu}D_{\mu} - \gamma^{0}m)\psi = \psi^{\dagger}(iD_{t} + i\gamma^{0}\gamma^{k}D_{k} - m\gamma^{0})\psi$

NR limit with systematic 1/m_e expansion Goal: integrate out heavy dof→NR QED

$$\mathscr{L}_{\text{QED}} = \overline{\psi}(i\gamma^{\mu}D_{\mu} - \gamma^{0}m)\psi$$

Take a Dirac representation
 γ⁰: diagonal, γ⁵ γⁱ: off-diagonal

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \gamma^{i} = \begin{pmatrix} 0 \\ -\alpha \end{pmatrix}$$

 $\varphi = \psi^{\dagger} (iD_{\star} + i\gamma^{0}\gamma^{k}D_{k} - m\gamma^{0})\psi$

 $\begin{array}{cc} 0 & \sigma^{i} \\ \sigma^{i} & 0 \end{array} \right) \quad \gamma^{5} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \psi \sim \begin{pmatrix} \psi_{L} + \psi_{R} \\ \psi_{L} - \psi_{R} \end{pmatrix}$

$$P_{+} = \frac{1 + \gamma^{0}}{2} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}$$
$$P_{-} = \frac{1 - \gamma^{0}}{2} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}$$

NR limit with systematic 1/m_e expansion Goal: integrate out heavy dof→NR QED

$$\mathscr{L}_{\text{QED}} = \overline{\psi}(i\gamma^{\mu}D_{\mu} - \gamma^{0}m)\psi = \psi^{\dagger}(iD_{t} + i\gamma^{0}\gamma^{k}D_{k} - m\gamma^{0})\psi$$

 Take a Dirac representation γ^0 : diagonal, $\gamma^5 \gamma^i$: off-diagonal

$$\gamma^{0} = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \quad \gamma^{5} = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \qquad \psi \sim \begin{pmatrix} \psi_{L} + \psi_{R} \\ \psi_{L} - \psi_{R} \end{pmatrix}$$

• Shift the mass shell: one is massless, the other has mass 2m. $\Psi \rightarrow e^{-imt} \Psi \qquad \psi^{\dagger} (iD_{t} + i\gamma^{0}\gamma^{k}D_{k})$

$$= (\psi_1 \ \psi_2)^{\dagger} \begin{pmatrix} iD_t \\ i\sigma^k D_k \end{pmatrix}$$

$$-\gamma^0 m + m)\psi = -2mP_{-}$$

$$i\sigma^k D_k \\ iD_t - 2m \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

NR limit with systematic 1/m_e expansion

 Remove off-diagonal, use Foldy-Wouthuysen's method, systematic 1/m_e expansion

$$\mathscr{L}_{\text{QED}} = \psi^{\dagger} (iD_t + i\gamma^0 \gamma^k D_k - 2P_t)$$

even odd=off-diagonal even

Phys. Rev. 78 (Apr, 1950) and Phys. Rev. 78 (Apr, 1950).

<u>m)</u> even, large

even: commute with γ O odd: anti-commute with γ O

NR limit with systematic 1/m_e expansion

 Remove off-diagonal, use Foldy-Wouthuysen's method, systematic 1/m_e expansion

$$\mathscr{L}_{\text{QED}} = \psi^{\dagger}(iD_{t} + i\gamma^{0}\gamma^{k}D_{k} - 2P_{\mu})$$

odd=off-diagonal even
Order-by-order diagonalization [ren
 $\psi = e^{-iX_{0}/m}\psi'$, $\psi' = (\psi_{l})$
Expansion generates $[2mP_{\mu}]$,
Diagonal at $(1/m)^{0}$

Phys. Rev. 78 (Apr, 1950) and Phys. Rev. 78 (Apr, 1950).

т)**ψ** ren, large

even: commute with γ O odd: anti-commute with γ O

- move odd terms], odd X_n is introduced. $(\psi_h)^T$
- $iX_0/m] = 2i\gamma^0 X_0$ to remove $i\gamma^0 \gamma^k D_k$

NR limit with systematic 1/m_e expansion

 Remove off-diagonal, use Foldy-Wouthuysen's method, systematic 1/m_e expansion

 $\mathscr{L}_{\text{QED}} = \psi^{\dagger} (iD_t + i\gamma^0 \gamma^k D_k - 2P_m)\psi$ odd=off-diagonal even, large even $\psi = e^{-iX_0/m}\psi', \quad \psi' = (\psi_1 \psi_h)^T$ Diagonal at (1/m)⁰ $\psi = e^{-iX_0/m}e^{-iX_1/m^2}\psi'$

Phys. Rev. 78 (Apr, 1950) and Phys. Rev. 78 (Apr, 1950).

even: commute with γ O odd: anti-commute with γ O

- Order-by-order diagonalization [remove odd terms], odd X_n is introduced.
 - Expansion generates $[2mP_{,iX_0}/m] = 2i\gamma^0 X_0$ to remove $i\gamma^0 \gamma^k D_k$
- [(1/m) order] $e^{-iX_0/m}$ generates odd D_tX_0/m term, which is removed by X_1/m X_0^2/m term generates $(\gamma^k D_k)^2/m$ → Schrödinger type theory 9

FW method plus BSM or axion 2407.14598; G. Krnjaic, D. Rocha, T. Trickle • New physics effect $\overline{\psi}g\mathcal{O}_{BSM}\psi \rightarrow \psi'^{\dagger}\gamma^{0}g\mathcal{O}_{BSM}(1 + X_{0}/m + ...)\psi'$

integrate out heavy fermion

- Consider general QED+axion where $\theta = a/f_a$ Fridell, Ghosh, Hamada, **KT** (in pareparation) $\mathscr{L}_{\text{QED}+a} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m e^{i c_1 \gamma^5 \theta} - \frac{c_2}{2} \partial_{\mu} \theta \gamma^{\mu} \gamma^5 \right) \psi + \frac{\alpha c_3 \theta}{8\pi} F \tilde{F}$
- $\rightarrow \psi_l^{\dagger}[g\mathcal{O}_{\rm BSM}(1+X_0/m+\ldots)][1+\frac{g\mathcal{O}_{\rm BSM}^{\rm odd}}{(2m)}+\ldots]\psi_l$ due to light-heavy mixing

FW method plus BSM or axion 2407.14598; G. Krnjaic, D. Rocha, T. Trickle • New physics effect $\overline{\psi}g\mathcal{O}_{BSM}\psi \rightarrow \psi^{\dagger}\gamma^{0}g\mathcal{O}_{BSM}(1 + X_{0}/m + ...)\psi^{\prime}$

integrate out heavy fermion

- Consider general QED+axion where $\theta = a/f_a$ Fridell, Ghosh, Hamada, **KT** (in pareparation) $\mathscr{L}_{\text{QED}+a} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m e^{i c_1 \gamma^5 \theta} - \frac{c_2}{2} \partial_{\mu} \theta \gamma^{\mu} \gamma^5 \right) \psi + \frac{\alpha c_3 \theta}{8\pi} F \tilde{F}$

$$\mathscr{L}_{\text{QED}+a} = \psi^{\dagger} \left(iD_{t} + i\gamma^{0}\gamma^{k}D_{k} - ic_{1}m\theta\gamma^{0}\gamma^{5} - 2P_{-}m - \frac{c_{2}}{2}(\partial_{\mu}\theta)\gamma^{0}\gamma^{\mu}\gamma^{5}\right)\psi + O(p_{\text{Part of X0}})\psi = e^{-iX_{0}/m}e^{-iX_{1}/m^{2}}\psi' \quad X_{0} = \frac{-\gamma^{k}D_{k} + c_{1}m\theta\gamma^{5}}{2}, \quad X_{1} = \frac{e}{4}\gamma^{0}\gamma^{k}F_{0k} + \frac{i}{4}(c_{1} - c_{2})m\dot{\theta}\gamma^{0}\phi'$$

 $\rightarrow \psi_l^{\dagger} [g \mathcal{O}_{\text{BSM}}(1 + X_0/m + \dots)] [1 + g \mathcal{O}_{\text{BSM}}^{\text{odd}}/(2m) + \dots] \psi_l$ due to light-heavy mixing

Since $g \sim m$, expansion is unclear. We treat $\theta \sim 1/m$: (1/m) expansion is not ruined

NRQED with axion

$$\mathscr{L} = \begin{pmatrix} \psi_l \\ \psi_h \end{pmatrix}^{\dagger} \left(iD_t - 2P_-m - \frac{\gamma^0 \gamma^k \gamma^l D_k D_l}{2m} + \frac{c_1 - c_2}{2} (\partial_\mu \theta) \gamma^0 \gamma^\mu \gamma^5 - \frac{1}{m^2} [iD_t, iX_1] \right) \begin{pmatrix} \psi_l \\ \psi_h \end{pmatrix}$$
$$\supset \psi_l^{\dagger} \left(iD_t + \frac{\sigma^k \sigma^l D_k D_l}{2m} + \frac{c_1 - c_2}{2} (\partial_i \theta) \sigma^i \right) \psi_l$$
where
$$X_0 = \frac{-\gamma^k D_k + c_1 m \theta \gamma^5}{2}, \quad X_1 = \frac{e}{4} \gamma^0 \gamma^k F_{0k} + \frac{i}{4} (c_1 - c_2) m \dot{\theta} \gamma^0 \gamma^5$$

• Naively expected operator $\psi^{\dagger}(m\theta^2)\psi$ does NOT appear.

Fridell, Ghosh, Hamada, **KT** (in pareparation)

NRQED with axion

$$\mathscr{L} = \begin{pmatrix} \psi_l \\ \psi_h \end{pmatrix}^{\dagger} \left(iD_t - 2P_m - \frac{\gamma^0 \gamma^k \gamma^l D_k D_l}{2m} + \frac{c_1 - c_2}{2} (\partial_\mu \theta) \gamma^0 \gamma^\mu \gamma^5 - \frac{1}{m^2} [iD_t, iX_1] \right) \begin{pmatrix} \psi_l \\ \psi_h \end{pmatrix}$$
$$\supset \psi_l^{\dagger} \left(iD_t + \frac{\sigma^k \sigma^l D_k D_l}{2m} + \frac{c_1 - c_2}{2} (\partial_i \theta) \sigma^i \right) \psi_l$$
where
$$X_0 = \frac{-\gamma^k D_k + c_1 m \theta \gamma^5}{2}, \quad X_1 = \frac{e}{4} \gamma^0 \gamma^k F_{0k} + \frac{i}{4} (c_1 - c_2) m \dot{\theta} \gamma^0 \gamma^5$$

- Naively expected operator $\psi^{\dagger}(m\theta^2)\psi$ does NOT appear.
- Surprising cancellations occur at the Lagrangian level.

Fridell, Ghosh, Hamada, **KT** (in pareparation)

• Consistency check with **KSVZ limit** (**c1=c2**), equivalent to only aFF~ coupling

PQ symmetry in NR

- Transformation $\theta \to \theta \alpha, \psi \to e^{ic_1 \frac{\alpha}{2} \gamma^2} \psi$
- FW method at leading order $\psi = e^{-iX_0/m}\psi'$

$$\psi' = e^{i\frac{X_0}{m}}\psi \to e^{i\frac{X_0}{m} - i\frac{c_1\alpha}{2}\gamma^5}e^{i\frac{x_0}{m} - i\frac{x_0}{2}\gamma^5}e^{i\frac{x_0}{m} - i\frac{x_0}{2}$$

After tedious calculation

$$\begin{pmatrix} \psi_l \\ \psi_h \end{pmatrix} \rightarrow \begin{pmatrix} 1 + \frac{c_1 \alpha}{4m} \sigma^k D_k & O(\alpha^2) \\ O(\alpha^2) & 1 - \frac{c_1 \alpha}{4m} \sigma^k D \end{pmatrix}$$

Fridell, Ghosh, Hamada, **KT** (in pareparation)

 $\mathscr{L}_{\text{QED}+a} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m e^{i c_1 \gamma^5 \theta} - \frac{c_2}{2} \partial_{\mu} \theta \gamma^{\mu} \gamma^5 \right) \psi + \frac{\alpha c_3 \theta}{8\pi} F \tilde{F}$

 $e^{i\frac{c_{1}\alpha}{2}\gamma^{5}}W = e^{i\frac{x_{0}}{m} - i\frac{c_{1}\alpha}{2}\gamma^{5}}e^{i\frac{c_{1}\alpha}{2}\gamma^{5}}e^{-i\frac{x_{0}}{m}}W'$

 Ψ_h

Leading order trans. is diagonal!! $\left(\psi_{l}\right) \qquad \qquad \delta\psi_{l} = \frac{c_{1}\alpha}{4m}\sigma^{k}D_{k}\psi_{l}$ Non-trivial because PQ mixes fermion by $\gamma 5$

 In CM systems, many operators emerge in low energy. E.g. strong coupling via phonon induce effective four-fermi contact term

$$\mathscr{L}_{\text{Cooper}} = \frac{1}{\Lambda^2} (\psi_l \sigma_y \psi_l) (\psi_l \sigma_y \psi_l)$$

Fridell, Ghosh, Hamada, **KT** (in pareparation)

* Cooper channel, spin up-down pair

 In CM systems, many operators emerge in low energy. E.g. strong coupling via phonon induce effective four-fermi contact term

$$\mathscr{L}_{\text{Cooper}} = \frac{1}{\Lambda^2} (\psi_l \sigma_y \psi_l) (\psi_l \sigma_y \psi_l)$$

 $\mathscr{L}(\psi, \Delta) \supset -\Lambda^2 |\Delta|^2 + (\psi_l \sigma_v \psi_l) \Delta^* + (\psi_l \sigma_v \psi_l)^* \Delta$

 $\mathscr{L}_{\Delta}(\Delta)$ Theory of conventional superconductivity.

Fridell, Ghosh, Hamada, **KT** (in pareparation)

- * Cooper channel, spin up-down pair
- Hubbard-Stratonovich transformation: auxiliary field Δ added in path integral
 - Integrate out fermion, and obtrain the theory of Cooper pair scalar field.

 In CM systems, many operators emerge in low energy. E.g. strong coupling via phonon induce effective four-fermi contact term

$$\mathscr{L}_{\text{Cooper}} = \frac{1}{\Lambda^2} (\psi_l \sigma_y \psi_l) (\psi_l \sigma_y \psi_l)$$

Fridell, Ghosh, Hamada, **KT** (in pareparation)

* Cooper channel, spin up-down pair

• Now we can check the low energy operators attached with axion by PQ transf.

 $(\psi_l \sigma_v \psi_l) \rightarrow (\psi_l \sigma_v \psi_l)$ PQ invariant without axion (rare)

• In CM systems, many operators emerge in low energy. E.g. strong coupling via phonon induce effective four-fermi contact term

$$\mathscr{L}_{\text{Cooper}} = \frac{1}{\Lambda^2} (\psi_l \sigma_y \psi_l) (\psi_l \sigma_y \psi_l)$$

- $(\psi_l \sigma_v \psi_l) \rightarrow (\psi_l \sigma_v \psi_l)$ PQ invariant without axion (rare)
- How about something like $(\overline{\psi}\psi)^n$?

$$\begin{split} \psi_l^{\dagger} \psi_l &\to \psi_l^{\dagger} \psi_l + \frac{c_1 \alpha}{4m} D_k(\psi_l^{\dagger} \sigma^k \psi_l) \quad \text{not invariant} \\ \text{ests how axion should couple.} \quad \left(\psi_l^{\dagger} \psi_l + \frac{c_1 \theta}{4m} D_k(\psi_l^{\dagger} \sigma^k \psi_l) \right)^n \text{PQ inval} \end{split}$$

This sugge [assuming]

Fridell, Ghosh, Hamada, **KT** (in pareparation)

* Cooper channel, spin up-down pair • Now we can check the low energy operators attached with axion by PQ transf.

ariant

Heavy Axion coupling to hadrons

Axion to hadron decays

• If it's heavier than the standard QCD axion, $m_a > m_{\pi} f_{\pi}/f_a$

For fa>>TeV, difficult in the ground experiments, but in cosmology.

In particular **4He** which is determined by **neutron abundance**.

Gravitino Past relevant works Dark photon

- Higgs portal scalar
- Sterile neutrinos

unexplored possibility of axion for m_a >MeV [B,K physics, beam-dump if f_a <10TeV]

e.g. Y. Afik, B. Dobrich, J. Jerhot, Y. Soreq, KT; S. Chakraborty, M. Kraus, V. Loladze, T. Okui, KT

Big Bang Nucleosynthesis probes long-lived particles decaying to hadrons.

M. Kawasaki, K. Kohri, T. Moroi [astro-ph/0408426]; K. Kohr i[astro-ph/0103411]

A. Fradette, M. Pospelov, J. Pradler, A. Ritz 1407.0993

A. Fradette, M. Pospelov 1706.01920

A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy, V. Syvolap 2008.00749

Standard neutron decoupling (\rightarrow ⁴He)

• Neutron weak interaction decouples from the bath at T~0.7MeV (t~1sec).

$$p + e^- \leftrightarrow n + \nu_e$$

Rate is tiny: $n_{\nu,e}\sigma v \sim T^5 G_F^2$ neutron to proton ration: $n_n/n_p \simeq 1/6$

• After some decays, $n_n/n_p \simeq 1/7$ neutrons convert to ⁴He at T~70keV

$$Y_P = \frac{\rho_{^4\text{H}_e}}{\rho_{\text{baryon}}} \simeq \frac{2(n_n/n_p)}{1 + n_n/n_p} \simeq 0.2$$

• Standard process $p + e^- \leftrightarrow n + \nu_e$ New process $n + \pi^+ \rightarrow p + \pi^0$

$$n + \pi^{+} \rightarrow p + \pi^{0}$$

$$p + \pi^{-} \rightarrow n + \pi^{0}$$

$$p + K^{-} \rightarrow n + X$$

$$p(n) + K_{L} \rightarrow n(p)$$

$$p, n + \bar{p}(\bar{n}) \rightarrow X$$

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

~1mb

 $\sim 30 \text{mb}$

~10mb

~40mb 18

- Standard process $p + e^- \leftrightarrow n + \nu_e$ New process $n + \pi^+ \rightarrow p + \pi^0$
- Thermally produced axion $Y_a \sim 1/g_*(T_{FO})$. Hadrons from axion decays participates in $p \leftrightarrow n$ by much higher rate ($\sigma \sim f_{\pi}^{-2} \sim 4$ **mb**).

$$n + \pi^{+} \rightarrow p + \pi^{0}$$

$$p + \pi^{-} \rightarrow n + \pi^{0}$$

$$p + K^{-} \rightarrow n + X$$

$$p(n) + K_{L} \rightarrow n(p)$$

$$p, n + \bar{p}(\bar{n}) \rightarrow X$$

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

~1mb

 $\sim (30)$ mb

~10mb

~40mb 18

- Standard process $p + e^- \leftrightarrow n + \nu_e$ New process $n + \pi^+ \rightarrow p + \pi^0$
- Thermally produced axion $Y_a \sim 1/g_*(T_{FO})$. Hadrons from axion decays participates in $p \leftrightarrow n$ by much higher rate ($\sigma \sim f_{\pi}^{-2} \sim 4$ **mb**).
- Hadrons except K_L immediately slow down

$$n + \pi^{+} \rightarrow p + \pi^{0}$$

$$p + \pi^{-} \rightarrow n + \pi^{0}$$

$$p + K^{-} \rightarrow n + X$$

$$p(n) + K_{L} \rightarrow n(p)$$

$$p, n + \bar{p}(\bar{n}) \rightarrow X$$

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

- ~1mb
- ~(3()mh
- ~10mb
- ~40mb 18

- Standard process $p + e^- \leftrightarrow n + \nu_e$ Standard New process $n + \pi^+ \rightarrow p + \pi^0$ Rate: $n_{\nu,e}\sigma v \sim T^5 G_F^2 \sim 10^{-26} \text{GeV}$ NP Rate: Hadrons from axion decays participates in $n_{a\to K}\sigma v \sim (\mathrm{BR}e^{-t_{\mathrm{BBN}}/\tau_a})T^3 10\mathrm{mb}$ $p \leftrightarrow n$ by much higher rate ($\sigma \sim f_{\pi}^{-2} \sim 4$ **mb**). ~ 10^{-10} GeV(BR e^{-1s/τ_a}) 16 orders larger!
- Thermally produced axion $Y_a \sim 1/g_*(T_{FO})$. Hadrons except K_L immediately slow down

$$n + \pi^{+} \rightarrow p + \pi^{0}$$

$$p + \pi^{-} \rightarrow n + \pi^{0}$$

$$p + K^{-} \rightarrow n + X$$

$$p(n) + K_{L} \rightarrow n(p)$$

$$p, n + \bar{p}(\bar{n}) \rightarrow X$$

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

- ~1mb
- $\sim 30 \text{mb}$
- ~10mb
- ~40mb 18

- Standard process $p + e^- \leftrightarrow n + \nu_e$ Standard New process $n + \pi^+ \rightarrow p + \pi^0$ Rate: $n_{\nu.e}\sigma v \sim T^5 G_F^2 \sim 10^{-26} \text{GeV}$ NP Rate: Hadrons from axion decays participates in $n_{a\to K}\sigma v \sim (\mathrm{BR}e^{-t_{\mathrm{BBN}}/\tau_a})T^3 10\mathrm{mb}$ $p \leftrightarrow n$ by much higher rate ($\sigma \sim f_{\pi}^{-2} \sim 4$ **mb**). ~ 10^{-10} GeV(BR $e^{-1s/\tau_a})$ 16 orders larger!
- Thermally produced axion $Y_a \sim 1/g_*(T_{FO})$. Hadrons except K_L immediately slow down

$$n + \pi^{+} \rightarrow p + \pi^{0}$$

$$p + \pi^{-} \rightarrow n + \pi^{0}$$

$$p + K^{-} \rightarrow n + X$$

$$p(n) + K_{L} \rightarrow n(p)$$

$$p, n + \bar{p}(\bar{n}) \rightarrow X$$

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

- ~1mb
- ~30mb
- ~10mb
- ~40mb 18

e.g. two rates are comparable if BR~0.1, τ_a~**0.03sec**

> Much stronger than naive bound $\tau_a \sim t_{BBN} \sim 1 sec$

Updates from previous works

- Many hadronic cross sections updated.
- **K**_L was not included or assumed to be thermal. Account K_{L} mom. spectrum from axion decay. Cross section weighted by momentum.

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

Proper partial wave analysis, Coulomb correction, tedious isospin analysis [thanks to Taehyun]

Updates from previous works

- Many hadronic cross sections updated.
- **K**_L was not included or assumed to be thermal. Account K_L mom. spectrum from axion decay. Cross section weighted by momentum.

background cosmology modified (expansion rate is larger)

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

Proper partial wave analysis, Coulomb correction, tedious isospin analysis [thanks to Taehyun]

• As new particles heavy >GeV, the decay products are **extra radiation** \rightarrow N_{eff} bound Dunsky, Hall, Harigaya [2205.11540]

Preliminary Results

- First study for axion hadronic decays.
- Require ΔYp/Yp<4% (conservative)
- m_a threshold is $3m_{\pi}$ ~400MeV, Kaon matters for m_a >1GeV.
- Better than Neff bound, comparable to CMB-S4 projection. Dunsky, Hall, Harigaya [2205.11540]

★the updates can be implemented to other particles (sterile v, dark γ, Higgs portal)

Outlook

- Axion predominantly couple to electrons We improved FW method to accommodate axion effect. (First?) obtained PQ transformation in NR. Powerful tool to find the axion coupling in various CM systems.
- Heavy axion that decay to hadrons (π , K, baryon \rightarrow m_a>400MeV)

Adopting earlier works for other long-lived particles in BBN, we update the methods, for KL and background cosmology.

First study on the axion \rightarrow hadrons. Lifetime bound ~0.02sec (f_a~10⁹⁻¹¹GeV).

Fridell, Ghosh, Hamada, **KT** (in pareparation)

Interesting cancellation in KSVZ limit. Checking with higher dim operators.

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

Thank you!

Backup

Results

Results

Results

