

Consistent Excesses in SUSY DM searches at the LHC

Sven Heinemeyer, IFT/MultiDark (CSIC, Madrid)

Daejeon, 11/2024

- 1. The main idea
- 2. Evidence for low-energy SUSY?!
- 3. Wino/bino vs. higgsino DM
- 4. Reconstruction of wino/bino DM at the ILC
- 5. Conclusions

1. The main idea

The MSSM

 \Rightarrow large uncolored / EW sector

charginos/neutralinos: M_1 , M_2 , μ , tan $\beta \Rightarrow$ Dark Matter candidate: $\tilde{\chi}_1^0$ Sleptons: $M_{\tilde{l}_L}$, $M_{\tilde{l}_R}$ (equal for all 3 generations, or different 1.2. vs. 3.)

A) wino/bino DM with chargino co-annihilation $(M_1 \sim M_2 \leq \mu)$ relic DM density 100% fulfilled $\Rightarrow m_{(N)LSP} \lesssim 650(700) \text{ GeV}$ B/C) bino DM with slepton co-annihilation $(M_1 \leq M_2, \mu)$ relic DM density 100% fulfilled \Rightarrow two cases: all 3 generations degenerate vs. 3rd generation independent $\Rightarrow m_{(N)LSP} \lesssim 550(600) \text{ GeV}$ D) higgsino DM: $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_2^0} \sim m_{\tilde{\chi}_1^\pm} \sim \mu \ (\mu \lesssim M_1, M_2)$ relic DM density as upper limit (otherwise $m_{\tilde{\chi}_1^0} \sim 1$ TeV) $\Rightarrow m_{(N)LSP} \lesssim 500 \text{ GeV}$ <u>E) wino DM:</u> $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_1^\pm} \sim M_2 \ (M_2 \lesssim M_1, \mu)$ relic DM density as upper limit (otherwise $m_{\tilde{\chi}_1^0} \sim 3 \text{ TeV}$) $\Rightarrow m_{(N)LSP} \lesssim 600 \text{ GeV}$ Upper limits on $m_{(N)LSP}$: assume 5σ deviation in $(g-2)_{\mu}$

 $\Rightarrow 2\sigma$ deviation achieved by heavier sleptons (in A/D/E)

SUSY can easily explain "any" deviation in a_{μ} :

Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Enhancement factor as compared to SM:

$$\mu - \tilde{\chi}_i^{\pm} - \tilde{
u}_\mu$$
 : $\sim m_\mu$ tan eta
 $\mu - \tilde{\chi}_j^0 - \tilde{\mu}_a$: $\sim m_\mu$ tan eta

SM, EW 1L:
$$\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_W^2}$$

MSSM, 1L: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{SUSY}^2} \times \tan \beta$

 \Rightarrow slepton masses constrol the size of $\Delta a_{\mu}^{\text{MSSM}}$

2. Evidence for low-energy SUSY?!

Only this one is actually excluded ! -

 \Rightarrow Our "models" predict low chargino/neutralino masses

Possible search channels:

$$-pp \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} + X$$

$$-pp \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} + H/Z$$

$$-pp \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} H/Z \ \tilde{\chi}_{1}^{0} W^{\pm}$$

$$-pp \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} W^{+} \ \tilde{\chi}_{1}^{0} W^{-}$$

$$-\dots$$

Possible kinematic situations:

- non-compressed spectra: on-shell decays to $H/Z, W^{\pm}$
- compressed spectra: off-shell decays to Z, W^{\pm}
- light sleptons that appear in the decay chains
- heavy sleptons that are absent from the decay chains

- . . .

 \Rightarrow only one of these can be realized \Rightarrow only one of them should show up in the LHC searches \Rightarrow Our "models" predict low chargino/neutralino masses

Golden mode at the LHC:

\Rightarrow experimental results?

Results: "compressed" spectra w/ heavy sleptons:

Results: "compressed" spectra w/ heavy sleptons: one more CMS analysis:

Two possible scenarios:

$$\begin{array}{l} - m_{\tilde{\chi}_2^0} \sim m_{\tilde{\chi}_1^\pm} \\ - \Delta m := m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \sim \mathcal{O} \text{ (20 GeV)} \end{array}$$

A) wino/bino DM with chargino co-annihilation $(|M_1| \sim M_2 \lesssim \mu)$ relic DM density 100% fulfilled $\Rightarrow m_{(N)LSP} \lesssim 650(700)$ GeV

<u>D) higgsino DM:</u> $m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_2^0} \sim m_{\tilde{\chi}_1^\pm} \sim \mu \ (\mu \lesssim |M_1|, M_2)$ relic DM density as upper limit (otherwise $m_{\tilde{\chi}_1^0} \sim 1 \text{ TeV})$ $\Rightarrow m_{(N)LSP} \lesssim 500 \text{ GeV}$

 \Rightarrow can they fit the excesses?

3. Wino/bino vs. higgsino DM

[M. Chakraborti, S.H., I. Saha '24]

A) Wino/bino DM with chargino co-annihilation

Parameter scan:

$$\begin{split} 100 \ {\rm GeV} &\leq |M_1| \leq 400 \ {\rm GeV} \;, \\ |M_1| \leq M_2 \leq 1.1 |M_1| \;, \\ 1.1 |M_1| \leq \mu \leq 10 |M_1|, \\ 2 \leq \tan\beta \leq 60, \\ 100 \ {\rm GeV} \leq m_{\widetilde{L}} \leq 1.5 \ {\rm TeV}, \end{split}$$

 $m_{\tilde{R}} = m_{\tilde{L}}$.

(latter condition only to make the analysis simpler, no relevant effect)

wino/bino(+): $M_1 \times \mu > 0$ wino/bino(-): $M_1 \times \mu < 0$

relic DM density can be 100% fulfilled $\Rightarrow m_{(N)LSP} \lesssim 600(650) \text{ GeV}$ (original scan assuming a 5 σ deviation in $(g-2)_{\mu}$)

wino/bino(+): results in the $m_{\tilde{\chi}_2^0}$ - Δm plane:

 \Rightarrow excesses not fully at the same Δm . . . \Rightarrow but many "good points" at $\Delta m \sim 20~{\rm GeV}$

wino/bino(+): limits on slepton masses:

\Rightarrow no limits on slepton masses (as expected)

wino/bino(+): LHC cross sections:

 \Rightarrow for lower massess XS have roughly the size required by excesses

wino/bino(+): direct detection prospects:

 \Rightarrow wino/bino(+)/ $\tilde{\chi}_1^{\pm}$ co-annihiliation will be covered by XENON-nT/LZ

wino/bino(–): results in the $m_{\tilde{\chi}_2^0}$ - Δm plane:

 \Rightarrow ATLAS/CMS excesses agree better in Δm than for wino/bino(+) \Rightarrow but many "good points" at $\Delta m \sim 25$ GeV

wino/bino(-): limits on slepton masses:

\Rightarrow no limits on slepton masses (as expected)

wino/bino(-): LHC cross sections:

 \Rightarrow for lower masses XS have roughly the size required by excesses

wino/bino(-): direct detection prospects:

 \Rightarrow wino/bino(-)/ $\tilde{\chi}_1^{\pm}$ co-annihiliation will be covered by XENON-nT/LZ \Rightarrow low mass points now excluded \Rightarrow would have been a problem for DD

D) Higgsino DM

Original parameter scan: $(M_1 \times \mu > 0)$

100 GeV $\leq \mu \leq$ 1.2 TeV ,

 $1.1\mu \leq M_1 \leq 10\mu \; ,$

 $1.1M_2 \le \mu \le 10\mu$,

 $5 \leq \tan \beta \leq 60$,

100 GeV $\leq m_{\widetilde{L}}, m_{\widetilde{R}} \leq$ 2 TeV,

 $\Rightarrow m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^\pm_1} \sim \mu$

Full DM relic density reached only for $m_{\tilde{\chi}_1^0} \sim 1 \text{ TeV}$ \Rightarrow incompatible with a 5 σ deviation in $(g-2)_{\mu}$ $\Rightarrow m_{(N)LSP} \lesssim 500 \text{ GeV}$

\Rightarrow direct detection is the limiting factor on Δm

Sven Heinemeyer – 9th IBS-IFT(-MultiDark) WS, 07.11.2024

[2021]

Results in the $m_{\tilde{\chi}_2^0}$ - Δm plane with new DD bound: [PRELIMINARY]

 \Rightarrow excess not fitted :-(\Rightarrow DD cuts away the "good points"

Problematic diagram for higgsino DM DD:

 $\phi = h, H$

Problematic diagram for higgsino DM DD:

 $\phi = h, H$

 \Rightarrow cancellation possible for $\mu \times M_1 < 0$ ("blind spots")

 \Rightarrow new scan with $M_1 < 0$

$$\begin{split} -190 \ \text{GeV} &\leq M_1 \leq -1500 \ \text{GeV} \ , \\ M_2 &= 2 \ \text{TeV} \ , \\ \mu &= \frac{-2M_1 \tan \beta}{4 + x_1 \tan^2 \beta}, \quad x_1 = \frac{m_h^2}{m_H^2} \ , \\ 5 &\leq \tan \beta \leq 50 \ , \\ 190 &\leq M_A \leq 1200 \ , \\ 2M_1 &\leq m_{\tilde{l}_L}, m_{\tilde{l}_R} \leq 1500 \ \text{GeV} \ , \end{split}$$

Condition on μ and M_1 : <u>exact</u> blind spot conditions relaxed blind spot condition: scan up to $\mu/|M_1| < 1$

New scan with $M_1 \times \mu < 0$

 $\Rightarrow M_A \gtrsim 500~{\rm GeV}$ and $\tan\beta \lesssim 2$ allowed

New scan with $M_1 \times \mu < 0$

 \Rightarrow restrictions still cut away the ''good parameter space''

 \Rightarrow higgsino(-) does not work (in the MSSM)

Compressed spectra at current and future colliders

Higgsino, wino and bino/wino DM:

 \Rightarrow excesses can be covered "in any case" at the ILC500/ILC1000

4. Reconstruction of wino/bino DM at the ILC

[S.H., F. Lika, G. Moortgat-Pick, PREL.]

Mini overview of the International Linear Collider (ILC)

Mini overview of the International Linear Collider (ILC)

Linear e^+e^- collider, $\sqrt{s} = 250 - 1000$ GeV

based on superconducting cavities (cold technology) (ITRP decision 2004)

- two detectors in one interaction region (push-pull)
- undulator based e^+ source
- polarized beams for e^- and e^+ ($P_{e^-} = 80\%$, $P_{e^+} = 60\%$)
- tunable energy

The main idea:

- 1. Assume that (low-mass) wino-bino DM ($\tilde{\chi}_1^{\pm}$ -coannihilation) is realized: $M_1 \leq M_2 \ll \mu$ (but for now $M_1 \times \mu > 0$).
- 2. At the ILC500 we measure $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_1^\pm}$ and $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\pm)$. XS measurement with two (good) polarizations and at $\sqrt{s} = 400,500$ GeV.
- 3. This allows (in principle) to reconstruct M_1 , M_2 , μ , $m_{\tilde{\nu}_e}$, ... with uncertainties. tan β assumed to be roughly known from other measurements.
- 4. With these parameters $\Omega_{\chi}h^2$ can be calculated with uncertainties.
- 5. Comparison of $\Omega_{\chi}h^2$ with astrophysically measured value constitutes an important test of the model.

 $\Rightarrow m_{\tilde{\nu}_e}$ enters

- so far tree-level analysis
- to be repeated including full one-loop corrections
- more involved parameter dependences

 \Rightarrow easy for ILC500/ILC1000 :-)

full (original) set

accessible set

 \Rightarrow only lower masses accessible

 \Rightarrow interesting points corresponding to the excesses covered . . . (red star: example point)

Ellispses of four XS measurements:

 \Rightarrow four ellipses must meet – and they do!

Ellispses of four XS measurements with uncertainties:

 \Rightarrow uncertainties lead to overlap region So far used: correct, but unknown $m_{\tilde{\nu}_e}$ (too heavy for ILC500)

 \Rightarrow overlap region smeared out

 \Rightarrow indirect determination of $m_{ ilde{
u}_e}$ (within $\lesssim \pm 100$ GeV)

Reconstruction of M_1 and M_2 :

\Rightarrow good reconstructions possible

Reconstruction of μ and $m_{\tilde{\nu}_e}$:

⇒ bad reconstruction of μ , good reconstruction of $m_{\tilde{\nu}_e}$ ⇒ no problem, since μ is not very relevant in this scenario

Reconstruction of $\Omega_{\chi}h^2$:

 \Rightarrow often large uncertainties - but not too bad either

 \Rightarrow reason: experimental uncertainties in M_1 and M_2

 \Rightarrow possible improvement: optimized \sqrt{s}

5. Conclusinos

- For the first time consistent excesses in ATLAS and CMS in SUSY searches have been observed.
- $pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^\pm \to \tilde{\chi}_1^0 Z^* \, \tilde{\chi}_1^0 W^*$

with $m_{\tilde{\chi}^0_2} \approx m_{\tilde{\chi}^\pm_1} \gtrsim$ 250 GeV, $\Delta m := m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1} \approx$ 20 GeV

- Best-fit explanation in the MSSM: wino/bino DM with $M_1 \times \mu < 0$ Consistent excesses in SUSY DM searches at the LHC: can easily be described by the simplest SUSY model (MSSM)!
- $\Omega_{\chi}h^2$ reconstruction at ILC500:
 - scenario: wino/bino DM with $M_1 \times \mu > 0$
 - measurement of $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_1^\pm}$ and $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp)$
 - XS measurement with two polarizations and at $\sqrt{s}=400,500~{\rm GeV}$
 - reconstruction of M_1 , M_2 , μ , $m_{\tilde{\nu}_e}$ (ind.!), ... with uncertainties
 - calculation of $\Omega_{\chi}h^2$ with uncertainties
 - \Rightarrow "agreement" with astrophysical measurement

Further Questions?

MSSM parameter determination:

- XS measurement very important
- $-M_2$ well determined
- μ poorly determined (not very relevant in this scenario)