Dark World to Swampland: 9th IBS-IFT Workshop

Based on: arXiv: 2406.04180 **Collaborators:** Eung Jin Chun (KIAS), Minxi He, Tae Hyun Jung, Jin Sun (IBS) Dark World to Swampland: 9th IBS-IFT Workshop

Based on: arXiv: 2406.04180 **Collaborators:** Eung Jin Chun (KIAS), Minxi He, Tae Hyun Jung, Jin Sun (IBS)

Dark World to Swampland: 9th IBS-IFT Workshop

Based on:

arXiv: 2406.04180

Collaborators: Eung Jin Chun (KIAS), Minxi He, Tae Hyun Jung, Jin Sun (IBS) Baryon Asymmetry (from BBN and CMB):

$$Y_B = \frac{n_B - n_{\bar{B}}}{s} = 8.7 \times 10^{-11}$$

Dark Matter abundance(from CMB): $\Omega_{\rm DM} h^2 = \frac{\rho_{\rm DM}}{\rho_{\rm total}} h^2 = 0.12$

Cogenesis of Baryon and Dark Matter?

- Introduction.
- Our idea of cogenesis.
- •An explicit example.
- Summary.

How to generate asymmetry?

Conditions : Sakharov '67

- B / L violation.
- C and CP violation.
- Departure from <u>equilibrium</u>.

How to generate asymmetry?

Conditions : Sakharov '67

- B / L violation.
- C and CP violation.
- Departure from <u>equilibrium</u>.

(Same energy levels for particles/anti-particles)

How to generate asymmetry?

• Background dynamics of scalar field (axion): spontaneously breaks CPT.

Source:
$$\frac{c}{f_a}(\partial_{\mu}a) J_X^{\mu}$$
 $X = B, L...$ $\bar{\psi}\gamma^{\mu}\psi$

Suruj Jyoti Das

• B,L violation in equilibrium.

Spontaneous Baryogenesis

• Energy shift of
$$\psi(\bar{\psi})$$
 by $\Delta E_{\psi(\bar{\psi})} \sim \pm c \dot{\theta}$

In equilibrium
$$\Longrightarrow$$
 Chemical potential

 $\theta = a/f_a$

 $\mu \propto \dot{\theta}$

Spontaneous Baryogenesis

- Energy shift of $\psi(\bar{\psi})$ by $\Delta E_{\psi(\bar{\psi})} \sim \pm c \dot{\theta}$
- In equilibrium \implies Chemical potential

$$\theta = a/f_a$$

$\mu \propto \dot{\theta}$

Interactions

Creation terms - Annihilation terms + bias terms i:Particle species

 dn_i

dt

Spontaneous Baryogenesis

$$\frac{d}{dlnT}\left(\frac{\mu_i}{T}\right) = -\frac{1}{g_i}\sum_{\alpha}n_i^{\alpha}\frac{\gamma_{\alpha}}{H}\left[\sum_j n_j^{\alpha}\left(\frac{\mu_j}{T}\right) - n_S^{\alpha}\left(\frac{\dot{a}/f}{T}\right)\right],$$

α :Interactions

V. Domcke et al. 2021

	T[GeV]	y _e	<i>Y</i> ds	Уd	y_s	y_{sb}	\mathcal{Y}_{μ}	y _c	yτ	y_b	WS	SS	y _t
(v)	$(10^5, 10^6)$	q_e	1	1	1	1	1	1	1	1	1	1	1
(iv)	$(10^6, 10^9)$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	1
(iii)	$(10^9, 10^{11-12})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	\checkmark	1	\checkmark	\checkmark	1	\checkmark
(ii)	$(10^{11-12}, 10^{13})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	1	\checkmark
(i)	$(10^{13}, 10^{15})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	q_u	\checkmark

$$q_X = n_X - n_{\bar{X}} = \mu_X T^2/6$$

#Conserved charges + # Interactions in equilibrium = # Particle species = 16 (in SM)

Final Asymmetry:
$$\frac{n_B}{s} \simeq \frac{\mu_B T^2}{s} \simeq c_B \frac{\dot{\theta}}{g_* T_B}$$

 C_B : from transport eqns.

Suruj Jyoti Das

at B,L violation decoupling

So far....

$$\dot{\theta} \neq 0 \implies$$
 Chemical potential \implies Asymmetry $\simeq \mathcal{O}(1) \frac{\dot{\theta}}{g_* T}$

$\theta?$

A pseudo Nambu Goldstone boson after spontaneous breaking of a global symmetry

So far....

$$\dot{\theta} \neq 0 \implies$$
 Chemical potential \implies Asymmetry $\simeq \mathcal{O}(1) \frac{\dot{\theta}}{g_* T}$

$\theta?$

A pseudo Nambu Goldstone boson

after spontaneous breaking of a global symmetry

How to generate $\dot{\theta}$?

The Misalignment Mechanism

$$\mathcal{L} \supset f_a^2 \partial_\mu \theta \partial^\mu \theta - m_a^2(T) f_a^2 (1 - \cos(\theta))$$

EOM:
$$\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0$$

Initial conditions: $\theta \neq 0$ $\dot{\theta} = 0$

The Misalignment Mechanism

$$\mathscr{L} \supset f_a^2 \partial_\mu \theta \partial^\mu \theta - m_a^2(T) f_a^2 (1 - \cos(\theta))$$

EOM:
$$\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0$$

Initial conditions: $\theta \neq 0$ $\dot{\theta} = 0$

Oscillation:

leads to non-zero

 $\dot{\theta}$ Asymmetry

Relic density

$$\rho_{\theta}^{(0)} \simeq m_a^{(0)} n_a^{(0)} \quad \mathsf{DM}$$

$$\sim \frac{1}{2} m_a^{(0)} \theta_i^2 m_a^{\mathrm{osc}} f_a^2 \left(\frac{a^{\mathrm{osc}}}{a^{(0)}}\right)^3$$

$$\overset{\mathrm{No.}}{\overset{\mathrm{No.}}{\overset{\mathrm{Redshift}}{\overset{\mathrm{density}}$$

Cogenesis in the conventional misalignment ?

Way out:

Early dynamics with $m_a(T) \gg m_a^{(0)}$ Separate out $T_B \gg T_{osc}$

Our idea

- $\dot{\theta}/T$ large enough before T_{osc.}
- Baryogenesis at $T_B > T_{osc.}$
- Oscillation at low temperature : DM.

The Setup

• Scalar potential:
$$V(\Phi) = \lambda_{\phi} |\Phi|^4 - m_0^2 |\Phi|^2$$
.
 $\langle |\Phi| \rangle = m_0 / \sqrt{2\lambda_{\phi}} \equiv f_a^{(0)} / \sqrt{2}$

$$\Phi = \frac{1}{\sqrt{2}} \phi e^{ia/f_a}$$

Explicit breaking of U(1):

Mass of pNGB:

$$m_a^2(T) \sim \left(\frac{f_a(T)}{\Lambda}\right)^{n-4} f_a(T)^2.$$

How to realize f_a (T)?

Symmetry non-restoration

(S. Weinberg 1974)

Thermal corrections with negative contribution:

$$\Delta V = -2\lambda_{h\phi} |H|^2 |\Phi|^2 \quad \text{or} \quad \Delta V = -\lambda_{\phi s_i} |\Phi|^2 s_i^2$$

SM Higgs

Temp. dependent V:

$$V_T(\phi) \simeq \frac{\lambda_{\phi}}{4} \phi^4 - \frac{1}{2} (m_0^2 + c T^2) \phi^2$$

Symmetry non-restoration

For $T > T_c \equiv f_a^{(0)} / \sqrt{c_{\lambda}}$ $f_a(T) \propto T \quad m_a(T) \propto T^{(n-2)/2}$

Symmetry non-restoration

For $T > T_c \equiv f_a^{(0)} / \sqrt{c_{\lambda}}$ $f_a(T) \propto T \quad m_a(T) \propto T^{(n-2)/2}$

$$\phi\phi \leftrightarrow aa \propto \frac{T^2}{f_a^4} \Longrightarrow c_\lambda \gtrsim 10^7$$

pNGB Dynamics (n=5)

Modified E.O.M. :

$$\ddot{\theta} + \left(3H + 2\frac{\dot{f}_a}{f_a}\right)\dot{\theta} = -\frac{1}{n}m_a^2(T)\sin(n\theta)$$
$$-H$$

pNGB Dynamics (n=5)

Modified E.O.M. :

$$\ddot{\theta} + \left(3H + 2\frac{\dot{f}_a}{f_a}\right)\dot{\theta} = -\frac{1}{n}m_a^2(T)\sin(n\theta)$$
$$-H$$

1st epoch: H(T) > m(T)

pNGB is frozen

until....

$$H(T) = m(T) \implies T_0$$

2nd epoch: T < To

Oscillation?

pNGB slides

pNGB slides

$$\ddot{\theta} + H\dot{\theta} = -\frac{1}{n}m_a^2(T)\sin(n\theta) \quad \text{Gives asymmetry} \quad \begin{array}{l} \text{From Spontaneous} \\ \text{Spontaneous} \\ \text{Baryo.} \end{array}$$

$$\mathbf{Srd epoch: T < T_o}$$

$$\ddot{\theta} + \left(3H + 2\frac{\dot{f}_a}{f_a}\right)\dot{\theta} = -\frac{1}{n}m_a^2(T)\sin(n\theta) \qquad \underbrace{f_a(T) \text{ saturates}}_{\dot{\theta}/T \propto T^2}$$

$$\mathbf{4th epoch: T < T_{osc}}$$

$$\ddot{\theta} + 3H\dot{\theta} = -\frac{1}{n}m_a^{(0)2}\sin(n\theta)$$
Final oscillation: $\implies \dot{\theta}(T_{osc}) \simeq \frac{2}{5}m_a^{(0)}$

$$\underbrace{\rho_{osc}}_{s} \sim \frac{\left(m_a^{(0)}f_a^{(0)}\right)^2}{s(T_{osc})} \qquad \begin{array}{c} \text{pNGB oscillates} \\ \text{Gives DM} \end{array}$$

Numerical analysis:

An Explicit Example (Type I seesaw)

pNGB of B-L spontaneous symmetry breaking: Majoron

$$-\Delta \mathscr{L} = (y \Phi \nu^{c} \nu^{c} + Y_{D} H l \nu^{c} + h . c.) + V(\Phi)$$

 $M_N(T) \sim y_{\sqrt{c_\lambda}T}$

$$M_N^{(0)} \sim y f_a^{(0)} \sim T_c$$

- Lepton no. violating inverse decays (ID) in equilibrium.
- Asymmetry freezes out at sphaleron decoupling or ID decoupling.

An Explicit Example (Type I seesaw)

Equilibrium conditions

for $T \lesssim 10^5 \text{GeV}$

$$\gamma_{Y_{u_i}} : \hat{\mu}_{q_i} + \hat{\mu}_{u_i^c} + \hat{\mu}_H = 0$$

$$\gamma_{Y_{d_i}} : \hat{\mu}_{q_i} + \hat{\mu}_{d_i^c} - \hat{\mu}_H = 0$$

$$\gamma_{Y_{e_i}} : \hat{\mu}_{\ell_i} + \hat{\mu}_{e_i^c} - \hat{\mu}_H = 0$$

$$\gamma_{EWS} : \sum_{j} \left(\hat{\mu}_{\ell_j} + 3\hat{\mu}_{q_j} \right) = 0$$

$$\gamma_{SS} : \sum_{j} \left(2\hat{\mu}_{q_j} + \hat{\mu}_{u_j^c} + \hat{\mu}_{d_j^c} \right) = 0$$
iolation $\gamma_{Y_{ID}} : \hat{\mu}_{\ell_i} + \hat{\mu}_H - \frac{\dot{\theta}}{2T} = 0$

Hypercharge Y= 0

$$\hat{\mu}_{\rm B-L} = -\frac{79}{22}\frac{\dot{\theta}}{T}$$

An Explicit Example (Type I seesaw)

Case 1:
$$T_c$$
 Case 2, 3: T_c Increasing T
2: $M_N^{(0)}/z_{fo}$ T_{EW} 3: $M_N^{(0)}/z_{fo}$ T_{slide} T_0

Asymmetry:
$$Y_B = \frac{45c_B}{2\pi^2 g_*} \left(\frac{\dot{\theta}}{T}\right)_{\text{slide}} \begin{cases} 1 & \text{for } T_{\text{EW}} > T_c \\ \left(\frac{T_{\text{EW}}}{T_c}\right)^2 & \text{for } M_N^{(0)}/z_{\text{fo}} < T_{\text{EW}} < T_c \\ \left(\frac{M_N^{(0)}}{z_{\text{fo}}T_c}\right)^2 & \text{for } T_{\text{EW}} < M_N^{(0)}/z_{\text{fo}} \end{cases}$$

Predictions(for Majoron):

 $5\theta_i = 1, C = 10$

The Cogenesis Window

$$m_a^{(0)} = \frac{5 \text{ eV}}{C^{1/9} (5\theta_i)^{4/9}} \left(\frac{g_*}{100}\right)^{1/3} \left(\frac{10^8}{c_\lambda}\right)^{5/9}$$
$$f_a^{(0)} = 3 \times 10^6 \text{ GeV} C^{1/18} (5\theta_i)^{2/9} \left(\frac{100}{g_*}\right)^{1/6} \left(\frac{c_\lambda}{10^8}\right)^{5/18}$$

Summary

- Conventional misalignment <u>can give</u> baryon and DM abundance.
- Baryon asymmetry at high temperatures during sliding, DM at low temperatures during oscillation.
- Can be realized for Majoron, with specific predictions.
- Testable at kaon experiments, colliders....
- Can be extended for other D-operators, other models..

Summary

- Conventional misalignment <u>can give</u> baryon and DM abundance.
- Baryon asymmetry at high temperatures during sliding, DM at low temperatures during oscillation.
- Can be realized for Majoron, with specific predictions.
- Testable at kaon experiments, colliders....
- Can be extended for other D-operators, other models..

THANK YOU

Suruj Jyoti Das

Numerical analysis:

Potential stability:

