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Why should string theorists care about axions?

1. Active ongoing experiments searching for them.
2. Axions are ubiquitous in string theory.

3. Axion potentials are sensitive to UV physics, but are
computable in string theory.

Axion experiments can teach us about
where we live in the string theory landscape.
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Summary

There are many experiments online now searching for QCD
axion dark matter.

Question: if one of these QCD axion DM experiments
sees a signal, what would we learn about string theory?

Upshot: A signal gives an indication of the underlying string
theory geometry of our universe.
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1. Axions in string theory
2. QCD axion dark matter
3. QCD axion dark matter...in string theory

4. Geometric intuition
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Axions from string theory

Gauge fields in 10 dimensions give rise to 4D axions:

dloazﬁ (Aiop) + ... Ajop = 10D 4-form gauge field

lé”’\ Y, 2(4) some 4-cycle
Ay 1:/ A1op
()

These manifolds can have hundreds of 4-cycles
— hundreds of axions!
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Stacks of N membranes on four-cycles Zl(.4) In string theory give
rise to SU(N) gauge theories

by the volumes of these cycles:

1
2
gy rp X 4
Y M VOI(Z§4) ) ? J

We will not explicitly engineer QCD in this work: rather, we will
simply choose a cycle ZE‘” and ensure that vol(2§4)) reproduces

I

The gauge coupling of the theory is controlled NN
'L ..

J :

the correct ayp that we observe.

VOI(Z!Y) ~ 40[— apcp(My) = 0.119
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Axion potentials in type |lIB string theory

Instantons generate an axion potential of the following form:

Vaxion ~ Z ‘/\LIL [1 o COS(QI + SDI)]
I

A7 : instanton energy scales

4 g3 —2zvol(Z()
A ~ My Mgysye !

¥i: phases set by UV physics (assumed O(1))
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By axiverse | mean:

1 a b Q?:)CD¢CL 4 a
L= —5Ka0,0"0"¢" + =05 GAG + ;AI 1 — cos (271Q%.)] +...
Axiverse data: (historical) string theory expectations:

[Arvanitaki, Dimopoulos, Dubovski, Kaloper, March-Russell '09]

ab __ : '
K" = metric on field space axion decay constants ~ 10'° GeV

a .
@, 7 — instanton charges q
masses homogeneous on log scale

A7 = instanton scales

calculate explicitly in string theory
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Constructing the type IIB axiverse

Setup:

[Demirtas, McAllister, Rios-Tascon ’20]

« \We choose a Calabi-Yau threefold, X, whose toric fan is defined by a
triangulation of a polytope in the Kreuzer-Skarke database.

« We compactify type IIB string theory on (an orientifold of) X.

* We will not engineer a fully explicit standard model.

. We will choose a four-cycle Z(Q‘%D to host a toy model of QCD on a stack

of D7-branes and arrange that it reproduces the known gauge coupling at
low energies.
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Axions in type lIB string theory

We compactify type lIB string theory on a Calabi-Yau threefold (orientifold).

The effective theory contains N axions:

g — J c C, = Ramond Ramond four-form
A= 4
= z® = A 4-cycle

: . : : 4
The QCD axion, ,cp, is the one associated to C integrated over ZééD,
the four-cycle that hosts QCD.

Goal: compute the amount of QCD
axion dark matter in this setup.
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Axions as dark matter

V(a)  Can think of a cosmological background of axions a as a
A

simple harmonic oscillator in a potential V(a) = Emzaz.

* The expansion of the universe causes an effective
“friction” for the axion, proportional to the rate of

expansion H .

* The equation of motion for the axion is a damped SHO:

id+3Hd+m?a=0

a « When 3H < m, the system is underdamped and the axion
oscillates.

« Oscillations — energy density not yet detected = dark
matter!

1

Amount of dark matter produced by the QCD axion is e
ma
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Detecting axions as dark matter

 Main axion detection method is via the axion-photon coupling
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Detecting axions as dark matter

 Main axion detection method is via the axion-photon coupling

10~

 Most experiment/obervations that -

108

are sensitive across many
decades in mass are sensitive T
to couplings down to AR i
about 10710 Gev—1. Eiﬁi
e |f the QCD axion is all of dark oy
matter, can have mass-targeted
experiments that are much more S eV
sensitive

Idea: use a precise measurement of m,, to learn
about the geometry of extra dimensions
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Axion dark matter in string theory

. Pick a geometry X (a 6D Calabi-Yau manifold from the Kreuzer-Skarke database)
. Model QCD by imposing that voI(Zl(.4)) = 40

. Calculate the number of axions: N = # of 4-cycles 21(4)

1
vol(X )\/ VOI(Z§4))

. Calculate the axion decay constants: f. ~

. Calculate the mass of the QCD axion:

m —
OCD
fQCD
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« In each geometry, modeled QCD by imposing that voI(Zl(.4)) = 40
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» Striking feature: QCD axion mass increases with N.
DM experiments precisely measure the QCD axion mass

* Correlate string compactifications with DM experiment signals
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What do we learn?

* |f an experiment sees a signal of the QCD axion, we infer:

« How many 4-cycles our underlying geometry has

« How many other axions we should expect

Important caveats

* These correlations only hold in the corner of the landscape that
we explore—this is not everything

* More work must be done to understand how general these
findings are
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What do we see?

By scanning over tens of thousands of Calabi-Yau
compactifications, we find that as /N increases:

e QCD axion dark matter relic densities decrease G, varsh 24

[Halverson, Long, Nelson, Salinas ’19;

i AXIOn-phOtOn COUp|IngS InCI’eaSG Demirtas, NG, Long, McAllister, Moritz ‘21

NG, Marsh, McAllister, Moritz '23]

e The number of axion minima stays @(1) [NG, Janssen, Kleban, La Madrid, Mehta ’23]
e AXiON decay constants decrease [bemirtas, Long, McAllister, Stillman *18;

Demirtas, Long, Marsh, McAllister, Mehta "20]

» Stringy contributions to the QCD 6#-angle decrease

[Demirtas, NG, Long, McAllister, Moritz ’21]

All of these behaviors are a conseqguence of one underlying fact:

As N increases, hierarchies in instanton scales increase.
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Naive expectation: if the Calabi-Yau is isotropic, then the
decay constants are all ~ O(10'°GeV)

IR
O need vol(X 0 ) =40
. so that apcp(Mz) = 0.119

@\~ (DY ~ 4y ~
voI(ZQCD) voI(Z ) & voI(Z ) &

— results in all f; ~ 0(10'°GeV)
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What we actually find: Calabi-Yau 3-folds become
highly non-isotropic as N increases

“4) \ ~
need vol(Z 0 CD) ~ 40

so that aycp(My) = 0.119

vol(Z®)

(4) (4)
QCD) < voI(Z1 ) K voI(Z2 )L ...

— overall volume is enormous

— results in f; <K 0O(10'° GeV), decreasing with N
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What drives this behavior

Important complaint: what if Z(Q‘DCD was one of the largest

divisors?

need vol(Z®). ) ~ 40

0CD
@. @ so that apcp(My) = 0.119

— need to shrink entire manifold to be tiny

— lose control of the effective theory!
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What drives this behavior

Upshot:

4-cycle hierarchies that
increase with NV

. = f’s that decrease with N

control of the effective theory

Question: Could an axion experiment tell
us whether we are in a regime of control?
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Conclusions

* Axion DM experiments can probe the geometry of string
theory’s extra dimensions

 We compute the QCD axion mass in a large ensemble of
compactifications

 The QCD axion mass is strongly correlated with the number
of four-cycles—equivalently, the number of axions

* These correlations arise due to hierarchies in 4-cycle
distributions, as well as imposing control

* |n our ensemble, DM experiments are sensitive to the
geometry of the string compactification



Thank you!
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Constructing the type |lIB axiverse

A fully explicit axion model requires

* a calculation of zero modes of D3 instantons on all divisors
e orientifold

 moduli stabilization

 SUSY breaking

e explicit realization of the standard model

We want to understand axion physics in a large landscape of
models.

So instead assume:

« all effective divisors contribute

« orientifold doesn’t project out any instantons (for now!)
 moduli are set at “typical” values

* Conisder various choices of SUSY breaking scale

- - 4)
. Consider all candidates for ZQCD
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approach is to choose a representative point in the moduli space
and assume that the moduli can be stabilized (at least
perturbatively) there.

.  |deally we would uniformly sample this locus and
Kahler con / compute axion potentials at each point.

/ * Through random sampling, we found that for a given
geometry, the values of the moduli (divisor volumes) depend
very weakly on the location on this locus.
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How to choose moduli?

We would like to remain agnostic about moduli stabilization: our

approach is to choose a representative point in the moduli space
and assume that the moduli can be stabilized (at least
perturbatively) there.

Kahler con
locus where vol(Dqcp) gives

1
correct ar;; — = vol(Dycp)

g

Meytoff

“tip of the stretched Kahler cone”: where all curve volumes are > 1
condition on the divisors having volumes > 1 (the geometric regime).



