Modularity of Calabi-Yau Manifolds and Connections to Flux Compactifications

Sören Kotlewski

Work in collaboration with H. Jockers, P. Kuusela

Dark World to Swampland 2024: the 9th IBS-IFT Workshop

Physics: Geometric realizations are usually defined on spaces over $\mathbb R$ or $\mathbb C$

```
Number Theory: Framework of finite fields \mathbb{F}_p (for p prime)
```
Local-to-Global principle:

Geometries defined over finite fields contain information of those defined over C

Physics: Geometric realizations are usually defined on spaces over $\mathbb R$ or $\mathbb C$

Number Theory: Framework of finite fields \mathbb{F}_p (for p prime)

Local-to-Global principle:

Geometries defined over finite fields contain information of those defined over C

Example: Modularity of Calabi-Yau manifolds

- relates certain Calabi-Yau Geometries (in a unique way) to modular forms
- **•** based on tools from arithmetic geometry
- has strong implications on physics (flux compactifications, attractors,...)

[Weil, Deligne, Dwork, Serre, Wiles, Taylor, Moore, Bönisch, Candelas, de la Ossa, Elmi, Fischbach, Hulek, Kachru, Klemm, Kuusela, McGovern, Nally, Rodrigues-Villegas, van Straten, Verrill, Yang,. . .]

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

Flux superpotential for type IIB string compactifications: [Gukov,Vafa,Witten, 2000]

$$
W = \int_{X_6} \Omega\left(z^i\right) \wedge \left(F - \tau H\right) \qquad \Omega \in H^{3,0}(X_6, \mathbb{C})
$$

 z^i and τ scalar fields (the complex structure moduli and the axio-dilaton) Internal topological three-form fluxes $F, H \in H^3(X_6, \mathbb{Z})$ Supersymmetric vacuum constraints:

$$
\partial_{z^i} W = 0 \ , \ \partial_{\tau} W = 0 \ , \ W = 0
$$

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

Flux superpotential for type IIB string compactifications: [Gukov,Vafa,Witten, 2000]

$$
W = \int_{X_6} \Omega\left(z^i\right) \wedge \left(F - \tau H\right) \qquad \Omega \in H^{3,0}(X_6, \mathbb{C})
$$

 z^i and τ scalar fields (the complex structure moduli and the axio-dilaton) Internal topological three-form fluxes $F, H \in H^3(X_6, \mathbb{Z})$ Supersymmetric vacuum constraints:

$$
\int_{X_6} \Omega(z^i)\wedge F=0\ ,\ \int_{X_6} \Omega(z^i)\wedge H=0\ ,\ \int_{X_6} \partial_{z^i}\Omega\left(z^i\right)\wedge (F-\tau H)=0
$$

 X_6 supports a non-trivial flux configuration with a supersymmetric vacuum only if

$$
\langle F, H \rangle_{\mathbb{Z}} \subset \left[H^{2,1}(X_6,\mathbb{C}) \oplus H^{1,2}(X_6,\mathbb{C}) \right] \cap H^3(X_6,\mathbb{Z})
$$

defines a two-dimensional sublattice

Setup: M- (or F-)theory compactified on a Calabi-Yau fourfold X_8 Flux superpotential:

$$
W=\int_{X_8}\Omega(z^i)\wedge G\qquad \Omega(z^i)\in H^4(X_8,\mathbb{C})
$$

- zⁱ complex structure moduli
- $G \in H^4(X_8, \mathbb{Z})$ internal topological four-form flux

Supersymmetric vacuum constraints imply

 X_8 supports a non-trivial flux configuration with a supersymmetric vacuum only if

$$
\langle G \rangle_{\mathbb{Z}} \subset \left[H^{4,0}(X_8,\mathbb{C}) \oplus H^{2,2}(X_8,\mathbb{C}) \oplus H^{0,4}(X_8,\mathbb{C}) \right] \cap H^4(X_8,\mathbb{Z})
$$

 \Rightarrow one-dimensional sublattice

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

BPS black hole solutions evolve towards a critical point of the central charge

$$
Z(Q) = \frac{\int_{X_6} Q \wedge \Omega(z^i)}{\int_{X_6} \Omega(z^i) \wedge \Omega(z^i)} \qquad \Omega(z^i) \in H^{3,0}(X_6, \mathbb{C})
$$

zⁱ complex structure moduli

 $Q \in H^3(X, \mathbb{Z})$ charge of the black hole

Attractor points: Critical points of $Z(Q)$

For $|Z(Q)| \neq 0$: $Q \in H^{3,0}(X_6,\mathbb{C}) \oplus H^{0,3}(X_6,\mathbb{C})$

If $|Z(Q)| \neq 0$, X_6 has a rank-two attractor point only if $\langle Q, Q'\rangle_\mathbb{Z}\subset \left[H^{3,0}(X_6,\mathbb{C})\oplus H^{0,3}(X_6,\mathbb{C})\right]\cap H^3(X_6,\mathbb{Z})$

defines a two-dimensional sublattice

Flux vacua for type IIB string compactifications:

$$
\langle F, H \rangle_{\mathbb{Z}} \subset [H^{2,1}(X_6,\mathbb{C}) \oplus H^{1,2}(X_6,\mathbb{C})] \cap H^3(X_6,\mathbb{Z})
$$

 \Rightarrow two-dimensional sublattice of $H^3(X_6, \mathbb{Z})$ with definite Hodge type

Rank-two attractor points for type IIB string compactifications:

$$
\langle Q, Q' \rangle_{\mathbb{Z}} \subset \left[H^{3,0}(X_6, \mathbb{C}) \oplus H^{0,3}(X_6, \mathbb{C}) \right] \cap H^3(X_6, \mathbb{Z})
$$

 \Rightarrow two-dimensional sublattice of $H^3(X_6, \mathbb{Z})$ with definite Hodge type

Flux vacua for M- (or F-)theory compactifications:

$$
\langle G \rangle_{\mathbb{Z}} \subset \left[H^{4,0}(X_8,\mathbb{C}) \oplus H^{2,2}(X_8,\mathbb{C}) \oplus H^{0,4}(X_8,\mathbb{C}) \right] \cap H^4(X_8,\mathbb{Z})
$$

 \Rightarrow one-dimensional sublattice of $H^4(X_8, \mathbb{Z})$ with definite Hodge type

Arithmetic Geometry

• Assume that

$$
X = \{f_i(x_k) = 0\} \quad f_i(x) \in \mathbb{Z}[x_1,\ldots,x_m]
$$

is some (affine or projective) complex variety

Treat X to be defined over the finite field \mathbb{F}_{p^r} with p^r elements (p prime, $r \in \mathbb{N}$

$$
X/\mathbb{F}_{p^r}:=\{\bar{f}_i(x)=0\}\subset (\mathbb{F}_{p^r})^m
$$

Arithmetic Geometry

Assume that

$$
X = \{f_i(x_k) = 0\} \quad f_i(x) \in \mathbb{Z}[x_1,\ldots,x_m]
$$

is some (affine or projective) complex variety

Treat X to be defined over the finite field \mathbb{F}_{p^r} with p^r elements (p prime, $r \in \mathbb{N}$

$$
X/\mathbb{F}_{p^r}:=\{\bar{f}_i(x)=0\}\subset (\mathbb{F}_{p^r})^m
$$

(Finite) Number of points

$$
N_{p^r}(X):=|X/\mathbb{F}_{p^r}|
$$

collected in the generating local zeta function

$$
\zeta_p(X, T) = \exp\left(\sum_{r=1}^{\infty} N_{p^r}(X) \frac{T^r}{r}\right)
$$

"Local-to-global principle": $\zeta_p(X,\mathcal{T})$ contain information about the Hodge structure of $H^k(X,\mathbb{Z})$

Arithmetic Geometry

Weil conjectures: Constrain $\zeta_p(X,T)$ strongly [Weil, 1949]

Rationality:

$$
\zeta_p(X,\,T)=\frac{R_1(X,\,T)\cdots R_{2n-1}(X,\,T)}{R_0(X,\,T)\cdots R_{2n}(X,\,T)}\quad,\,\,n=\dim_{\mathbb{C}}(X)
$$

 $R_k(X,\mathcal{T})$ are polynomials of degree $b^k = \text{dim}(H^k(X,\mathbb{Q}))$ In particular: $R_k(X,\,T)=\det(\mathbb{1}-\,T\mathsf{Fr}_\rho^{-1})$ for linear maps

$$
Fr_{\rho}: H^k(X, \mathbb{Q}_p) \to H^k(X, \mathbb{Q}_p)
$$

 $H^{k}(X,\mathbb{Q}_{p})$: p-adic cohomology groups

Weil conjectures: Constrain $\zeta_p(X,T)$ strongly [Weil, 1949]

Rationality:

$$
\zeta_p(X,\,T)=\frac{R_1(X,\,T)\cdots R_{2n-1}(X,\,T)}{R_0(X,\,T)\cdots R_{2n}(X,\,T)}\quad,\,\,n=\dim_{\mathbb{C}}(X)
$$

 $R_k(X,\mathcal{T})$ are polynomials of degree $b^k = \text{dim}(H^k(X,\mathbb{Q}))$ In particular: $R_k(X,\,T)=\det(\mathbb{1}-\,T\mathsf{Fr}_\rho^{-1})$ for linear maps

$$
Fr_p: H^k(X, \mathbb{Q}_p) \to H^k(X, \mathbb{Q}_p)
$$

 $H^{k}(X,\mathbb{Q}_{p})$: p-adic cohomology groups

Important fact:

If $H^k(X,\mathbb{Z})$ has a Hodge substructure, Fr_p becomes block-diagonal \Rightarrow R_k(X, T) factorizes for (almost) all primes p!

The Modularity Conjecture

Consider an elliptic curve \mathcal{E} :

$$
R_1(\mathcal{E}, T) = 1 - a_p T + pT^2 \quad \text{with } a_p = p + 1 - N_p(\mathcal{E})
$$

Modularity: $f(\tau) := \sum a_p q^p$, $q = e^{2\pi i \tau}$ is a modular form of weight two p prime

Consider an elliptic curve \mathcal{E} :

$$
R_1(\mathcal{E}, T) = 1 - a_p T + pT^2 \quad \text{with } a_p = p + 1 - N_p(\mathcal{E})
$$

Modularity: $f(\tau) := \sum a_p q^p$, $q = e^{2\pi i \tau}$ is a modular form of weight two p prime

For a Calabi-Yau n-fold X: If $H^k(X,\mathbb{Z})$ has a two-dimensional Hodge substructure:

 $R_k(X,\,T)=R_\Lambda(X,\,T)\cdot R_{\Sigma}(X,\,T)$ with $R_\Lambda(X,\,T)=1-{\sf a}_p p^\alpha\,T+p^\beta\,T^2$

for some (fixed) $\alpha, \beta \in \mathbb{N}$

Serre's Modularity Conjecture: **Example 2018** [Serre, 1975]

$$
f(\tau) := \sum_{p \text{ prime}} a_p q^p \quad , \quad q = e^{2\pi i \tau} \text{ is a modular form}
$$

Manifolds of this type are called modular

Modularity Conjecture: If $H^k(X,\mathbb{Z})$ has a two-dimensional Hodge substructure, then X is modular and in particular $R_k(X, T)$ has a quadratic factor for (almost) all primes p

Remarks:

- Elliptic curves and rigid Calabi-Yau threefolds $(h^{2,1}=0)$ are proven to be modular
- Generic Calabi-Yau *n*-folds (with $n \geq 2$) are **not** modular

Modularity Conjecture: If $H^k(X,\mathbb{Z})$ has a two-dimensional Hodge substructure, then X is modular and in particular $R_k(X, T)$ has a quadratic factor for (almost) all primes p

Remarks:

- Elliptic curves and rigid Calabi-Yau threefolds $(h^{2,1}=0)$ are proven to be modular
- Generic Calabi-Yau *n*-folds (with $n \geq 2$) are **not** modular

Strategy to find supersymmetric flux vacua:

Use Modularity as necessary condition for Hodge substructures

 \Rightarrow Compute $R_k(X, T)$ for many primes If $R_k(X, T)$ has a quadratic factor for (almost) all primes, then X is a candidate to have a non-trivial Hodge substructure of $H^k(X,\mathbb{Z})$

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2020],...

Question: How can we find modular Calabi-Yau n-folds if these are non-generic? \Rightarrow Analyze not a single manifold but scan the full (complex structure) moduli space

Setup: X_z a family of Calabi-Yau *n*-folds, $z \in \mathbb{C}$ modulus

Algorithm: For $p > 7$ prime

- The moduli space reduces to the finite set $z_p \in \mathbb{F}_p$
- For each $z_p \in \mathbb{F}_p$ compute $R_k(X_{z_p}, \mathcal{T})$
- Count $|\{z_p \in \mathbb{F}_p \mid R_k(X_{z_p}, \mathcal{T})\}$ factorizes quadratically}

If there is at least one point of factorization per prime p :

• Find $z \in \overline{Q} \subset \mathbb{C}$ s.t.

$$
z_p \equiv z \mod p
$$

is a point of quadratic factorization for each prime p

• If such a $z \in \overline{Q}$ exists, the (complex) variety X_z is a candidate to be modular

Example: Non-Modular Case

The mirror family of the complete intersection $\mathbb{P}^7[2,2,4]$: [Jockers, S.K., Kuusela, '23]

- Family of Calabi-Yau fourfolds X_z dependent on one modulus $z \in \mathbb{C}$
- Number of quadratic factorizations for each prime $7 < p < 317$:

- Many primes p with no point $z_p \in \mathbb{F}_p$ s.t. $R_4(X_{z_p}, \mathcal{T})$ has a quadratic factorization
- The existence of an algebraic modulus $z\in \bar{\mathbb{Q}}\subset \mathbb{C}$ s.t. $H^4(X_z,\mathbb{Z})$ has a two-dimensional sublattice of definite Hodge type is highly unlikely

Example: Modular Case

A one-parameter family of Hulek-Verrill fourfolds $\mathsf{HV}_{\mathsf{z}}^{\mathsf{4}}$: [Jockers, S.K., Kuusela, '23]

• Number of quadratic factorizations for each prime $7 \le p \le 733$

- At least one point $z_p\in \mathbb{F}_p$ for each prime s.t. $R_4(\mathsf{HV}_{z_p}^4,\mathcal{T})$ has a quadratic factorization
- There is potentially a modulus $z\in\bar{\mathbb{Q}}$ s.t. HV_{z}^{4} is modular

Reconstruction of possible modular points $z \in \overline{0} \subset \mathbb{C}$ from p-adic data:

• Collection of points $z_p \in \mathbb{F}_p$ with quadratic factorization

• (Rational) solution $z \in \mathbb{Q}$ s.t. $z_p \equiv z \mod p$ appears in this table:

$$
z = 1
$$

 $\mathsf{HV}_{z=1}^4$ is a candidate for a modular Calabi-Yau fourfold!

A Modular Calabi-Yau Fourfold

Consistency checks:

 \bullet Coefficients a_p of quadratic factor

$$
R_{\Lambda}(\mathrm{HV}_1^4,\,T)=1-a_p pT+p^2T^2
$$

give the q-expansion of a unique modular form

• Identified generators of the two-dimensional Hodge substructure

 $\mathsf{\Lambda}=\left[H^{3,1}(\mathsf{HV}_{1}^4,\mathbb{C})\oplus H^{1,3}(\mathsf{HV}_{1}^4,\mathbb{C})\right]\cap H^4(\mathsf{HV}_{1}^4,\mathbb{Z})$

by Re($\nabla_z\Omega(1)$), Im($\nabla_z\Omega(1)$)

A Modular Calabi-Yau Fourfold

Consistency checks:

 \bullet Coefficients a_p of quadratic factor

$$
R_{\Lambda}(\mathrm{HV}_1^4,\,T)=1-a_p pT+p^2T^2
$$

give the q-expansion of a unique modular form

• Identified generators of the two-dimensional Hodge substructure

$$
\Lambda=\big[H^{3,1}(HV_1^4,\mathbb{C})\oplus H^{1,3}(HV_1^4,\mathbb{C})\big]\cap H^4(HV_1^4,\mathbb{Z})
$$

by Re($\nabla_z\Omega(1)$), Im($\nabla_z\Omega(1)$)

B Remainder

 $\Sigma = \left[H^{4,0}(\mathrm{HV}_{1}^{4},\mathbb{C}) \oplus H^{2,2}(\mathrm{HV}_{1}^{4},\mathbb{C}) \oplus H^{0,4}(\mathrm{HV}_{1}^{4},\mathbb{C}) \right] \cap H^{4}(\mathrm{HV}_{1}^{4},\mathbb{Z})$

defines suitable four-form fluxes

• In particular:

$$
\mathsf{G}:=\mathsf{C}\!\cdot\!\mathsf{Re}(\Omega(z))|_{z=1}\in\Sigma\ ,\quad \mathsf{C}\in\mathbb{R}
$$

So far: Used modularity as a tool to obtain geometric information on X

For flux vacua of type IIB compactified on a Calabi-Yau threefold X :

- \bullet X is modular with modular form $f_{\mathbf{X}}$
- Corresponding to f_X , there exists an (unique) elliptic curve $\mathcal{E}(f_X)$, s.t. $f_X = f_{\mathcal{E}(f_Y)}$
- Axio-dilaton constraint: $\int_X \partial_z \Omega(z) \wedge (F \tau H) = 0$
- The axio-dilaton is fixed by the complex structure of $\mathcal{E}(f_X)$ as

$$
\tau=\tau(\mathcal{E}(f_X))
$$

[Candelas, de la Ossa, Kuusela, McGovern, '23]

Similar for rank-two attractor points:

 \bullet f_X determines the area of the event horizon of the attractive BH

[Candelas, de la Ossa, Elmi, van Straten, '19]

Arithmetic geometry can be used as a tool to investigate varieties which are defined over C

Modularity serves as a necessary condition for (two-dimensional) Hodge substructures, i.e. for

- supersymmetric flux vacua
- rank-two attractor points
- topology changing transition loci?

The corresponding modular form f_X contains physical information

- For type IIB flux vacua: The axio-dilaton τ
- \bullet For rank-two attractor points: The BH entropy S_{RH}