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Number Theory and Physics?

Physics: Geometric realizations are usually defined on spaces over R or C

Number Theory: Framework of finite fields Fp (for p prime)

Local-to-Global principle:
Geometries defined over finite fields contain information of those defined over C

Example: Modularity of Calabi-Yau manifolds

relates certain Calabi-Yau Geometries (in a unique way) to modular forms

based on tools from arithmetic geometry

has strong implications on physics (flux compactifications, attractors,...)

[Weil, Deligne, Dwork, Serre, Wiles, Taylor, Moore, Bönisch, Candelas, de la Ossa, Elmi,

Fischbach, Hulek, Kachru, Klemm, Kuusela, McGovern, Nally, Rodrigues-Villegas, van Straten,

Verrill, Yang,. . .]
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Flux Vacua, Attractors and Hodge Substructures

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X6

Flux superpotential for type IIB string compactifications: [Gukov,Vafa,Witten, 2000]

W =

∫
X6

Ω
(
z i
)
∧ (F − τH) Ω ∈ H3,0(X6,C)

z i and τ scalar fields (the complex structure moduli and the axio-dilaton)

Internal topological three-form fluxes F ,H ∈ H3(X6,Z)
Supersymmetric vacuum constraints:

∂z iW = 0 , ∂τW = 0 , W = 0

X6 supports a non-trivial flux configuration with a supersymmetric vacuum
only if

⟨F ,H⟩Z ⊂
[
H2,1(X6,C)⊕ H1,2(X6,C)

]
∩ H3(X6,Z)

defines a two-dimensional sublattice
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Flux Vacua, Attractors and Hodge Substructures

Setup: M- (or F-)theory compactified on a Calabi-Yau fourfold X8

Flux superpotential:

W =

∫
X8

Ω(z i ) ∧ G Ω(z i ) ∈ H4(X8,C)

z i complex structure moduli

G ∈ H4(X8,Z) internal topological four-form flux

Supersymmetric vacuum constraints imply

X8 supports a non-trivial flux configuration with a supersymmetric vacuum
only if

⟨G ⟩Z ⊂
[
H4,0(X8,C)⊕ H2,2(X8,C)⊕ H0,4(X8,C)

]
∩ H4(X8,Z)

⇒ one-dimensional sublattice
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Flux Vacua, Attractors and Hodge Substructures

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X6

BPS black hole solutions evolve towards a critical point of the central charge

Z (Q) =

∫
X6

Q ∧ Ω(z i )∫
X6

Ω(z i ) ∧ Ω(z i )
Ω(z i ) ∈ H3,0(X6,C)

z i complex structure moduli

Q ∈ H3(X ,Z) charge of the black hole

Attractor points: Critical points of Z (Q)

For |Z (Q)| ≠ 0: Q ∈ H3,0(X6,C)⊕ H0,3(X6,C)

If |Z (Q)| ≠ 0, X6 has a rank-two attractor point only if

⟨Q,Q ′⟩Z ⊂
[
H3,0(X6,C)⊕ H0,3(X6,C)

]
∩ H3(X6,Z)

defines a two-dimensional sublattice
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Flux Vacua, Attractors and Hodge Substructures

Flux vacua for type IIB string compactifications:

⟨F ,H⟩Z ⊂
[
H2,1(X6,C)⊕ H1,2(X6,C)

]
∩ H3(X6,Z)

⇒ two-dimensional sublattice of H3(X6,Z) with definite Hodge type

Rank-two attractor points for type IIB string compactifications:

⟨Q,Q ′⟩Z ⊂
[
H3,0(X6,C)⊕ H0,3(X6,C)

]
∩ H3(X6,Z)

⇒ two-dimensional sublattice of H3(X6,Z) with definite Hodge type

Flux vacua for M- (or F-)theory compactifications:

⟨G ⟩Z ⊂
[
H4,0(X8,C)⊕ H2,2(X8,C)⊕ H0,4(X8,C)

]
∩ H4(X8,Z)

⇒ one-dimensional sublattice of H4(X8,Z) with definite Hodge type
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Arithmetic Geometry

Assume that
X = {fi (xk) = 0} fi (x) ∈ Z[x1, . . . , xm]

is some (affine or projective) complex variety

Treat X to be defined over the finite field Fpr with pr elements (p prime,
r ∈ N)

X/Fpr := {f̄i (x) = 0} ⊂ (Fpr )m

(Finite) Number of points

Npr (X ) := |X/Fpr |

collected in the generating local zeta function

ζp(X ,T ) = exp

( ∞∑
r=1

Npr (X )
T r

r

)

”Local-to-global principle”:
ζp(X ,T ) contain information about the Hodge structure of Hk(X ,Z)
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Arithmetic Geometry

Weil conjectures: Constrain ζp(X ,T ) strongly [Weil, 1949]

Rationality:

ζp(X ,T ) =
R1(X ,T ) · · ·R2n−1(X ,T )

R0(X ,T ) · · ·R2n(X ,T )
, n = dimC(X )

Rk(X ,T ) are polynomials of degree bk = dim(Hk(X ,Q))

In particular: Rk(X ,T ) = det(1− TFr−1
p ) for linear maps

Frp : Hk(X ,Qp) → Hk(X ,Qp)

Hk(X ,Qp): p-adic cohomology groups

Important fact:
If Hk(X ,Z) has a Hodge substructure, Frp becomes block-diagonal
⇒ Rk(X ,T ) factorizes for (almost) all primes p!
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The Modularity Conjecture

Consider an elliptic curve E :

R1(E ,T ) = 1− apT + pT 2 with ap = p + 1− Np(E)

Modularity: f (τ) :=
∑

p prime

apq
p , q = e2πiτ is a modular form of weight two

For a Calabi-Yau n-fold X : If Hk(X ,Z) has a two-dimensional Hodge substructure:

Rk(X ,T ) = RΛ(X ,T ) · RΣ(X ,T ) with RΛ(X ,T ) = 1− app
αT + pβT 2

for some (fixed) α, β ∈ N

Serre’s Modularity Conjecture: [Serre, 1975]

f (τ) :=
∑

p prime

apq
p , q = e2πiτ is a modular form

Manifolds of this type are called modular
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The Modularity Conjecture

Modularity Conjecture: If Hk(X ,Z) has a two-dimensional Hodge sub-
structure, then X is modular and in particular Rk(X ,T ) has a quadratic
factor for (almost) all primes p

Remarks:

Elliptic curves and rigid Calabi-Yau threefolds (h2,1 = 0) are proven to be
modular

Generic Calabi-Yau n-folds (with n ≥ 2) are not modular

Strategy to find supersymmetric flux vacua:
Use Modularity as necessary condition for Hodge substructures
⇒ Compute Rk(X ,T ) for many primes

If Rk(X ,T ) has a quadratic factor for (almost) all primes, then X is a
candidate to have a non-trivial Hodge substructure of Hk(X ,Z)

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2020],...
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Arithmetic Search for Fluxes

Question: How can we find modular Calabi-Yau n-folds if these are non-generic?
⇒ Analyze not a single manifold but scan the full (complex structure) moduli
space

Setup: Xz a family of Calabi-Yau n-folds, z ∈ C modulus

Algorithm: For p ≥ 7 prime

The moduli space reduces to the finite set zp ∈ Fp

For each zp ∈ Fp compute Rk(Xzp ,T )

Count |{zp ∈ Fp | Rk(Xzp ,T ) factorizes quadratically}|
If there is at least one point of factorization per prime p:

Find z ∈ Q̄ ⊂ C s.t.
zp ≡ z mod p

is a point of quadratic factorization for each prime p

If such a z ∈ Q̄ exists, the (complex) variety Xz is a candidate to be modular
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Example: Non-Modular Case

[Jockers, S.K., Kuusela, ’23]The mirror family of the complete intersection P7[2, 2, 4]:

Family of Calabi-Yau fourfolds Xz dependent on one modulus z ∈ C
Number of quadratic factorizations for each prime 7 ≤ p ≤ 317:

50 100 150 200 250 300

2

4

Many primes p with no point zp ∈ Fp s.t. R4(Xzp ,T ) has a quadratic
factorization

The existence of an algebraic modulus z ∈ Q̄ ⊂ C s.t. H4(Xz ,Z) has a
two-dimensional sublattice of definite Hodge type is highly unlikely
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Example: Modular Case

[Jockers, S.K., Kuusela, ’23]A one-parameter family of Hulek-Verrill fourfolds HV4
z :

Number of quadratic factorizations for each prime 7 ≤ p ≤ 733

50 100 150 200 250 300 350 400 450 500 550 600 650 700

2

4

6

8

10

At least one point zp ∈ Fp for each prime s.t. R4(HV
4
zp ,T ) has a quadratic

factorization

There is potentially a modulus z ∈ Q̄ s.t. HV4
z is modular
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Example: Modular Case

Reconstruction of possible modular points z ∈ Q̄ ⊂ C from p-adic data:

Collection of points zp ∈ Fp with quadratic factorization

prime p zp ∈ Fp

p = 11 1 6 8 10
p = 13 1
p = 17 1 15

prime p zp ∈ Fp

p = 19 1 2 7 17
p = 23 1 4 5 12
p = 29 1 6 11 24

(Rational) solution z ∈ Q s.t. zp ≡ z mod p appears in this table:

z = 1

HV4
z=1 is a candidate for a modular Calabi-Yau fourfold!
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A Modular Calabi-Yau Fourfold

Consistency checks:

Coefficients ap of quadratic factor

RΛ(HV
4
1,T ) = 1− appT + p2T 2

give the q-expansion of a unique modular form

Identified generators of the two-dimensional Hodge substructure

Λ =
[
H3,1(HV4

1,C)⊕ H1,3(HV4
1,C)

]
∩ H4(HV4

1,Z)

by Re(∇zΩ(1)), Im(∇zΩ(1))

Remainder

Σ =
[
H4,0(HV4

1,C)⊕ H2,2(HV4
1,C)⊕ H0,4(HV4

1,C)
]
∩ H4(HV4

1,Z)

defines suitable four-form fluxes

In particular:
G := C ·Re(Ω(z))|z=1 ∈ Σ , C ∈ R
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Physical Implications of Modularity

So far: Used modularity as a tool to obtain geometric information on X

For flux vacua of type IIB compactified on a Calabi-Yau threefold X :

X is modular with modular form fX

Corresponding to fX , there exists an (unique) elliptic curve E(fX ), s.t.
fX = fE(fX )

Axio-dilaton constraint:
∫
X
∂zΩ (z) ∧ (F − τH) = 0

The axio-dilaton is fixed by the complex structure of E(fX ) as

τ = τ(E(fX ))
[Candelas, de la Ossa, Kuusela, McGovern, ’23]

Similar for rank-two attractor points:
fX determines the area of the event horizon of the attractive BH

[Candelas, de la Ossa, Elmi, van Straten, ’19]
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Conclusions: Number theory and Physics!

Arithmetic geometry can be used as a tool to investigate varieties which are
defined over C

Modularity serves as a necessary condition for (two-dimensional) Hodge
substructures, i.e. for

supersymmetric flux vacua

rank-two attractor points

topology changing transition loci?

The corresponding modular form fX contains physical information

For type IIB flux vacua: The axio-dilaton τ

For rank-two attractor points: The BH entropy SBH
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