Modularity of Calabi-Yau Manifolds and Connections to Flux Compactifications

Sören Kotlewski

Work in collaboration with H. Jockers, P. Kuusela

Dark World to Swampland 2024: the 9th IBS-IFT Workshop

Physics: Geometric realizations are usually defined on spaces over ${\mathbb R}$ or ${\mathbb C}$

```
Number Theory: Framework of finite fields \mathbb{F}_p (for p prime)
```

Local-to-Global principle:

Geometries defined over finite fields contain information of those defined over $\ensuremath{\mathbb{C}}$

Physics: Geometric realizations are usually defined on spaces over ${\mathbb R}$ or ${\mathbb C}$

Number Theory: Framework of finite fields \mathbb{F}_p (for p prime)

Local-to-Global principle:

Geometries defined over finite fields contain information of those defined over $\ensuremath{\mathbb{C}}$

Example: Modularity of Calabi-Yau manifolds

- relates certain Calabi-Yau Geometries (in a unique way) to modular forms
- based on tools from arithmetic geometry
- has strong implications on physics (flux compactifications, attractors,...)

[Weil, Deligne, Dwork, Serre, Wiles, Taylor, Moore, Bönisch, Candelas, de la Ossa, Elmi, Fischbach, Hulek, Kachru, Klemm, Kuusela, McGovern, Nally, Rodrigues-Villegas, van Straten, Verrill, Yang,...]

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

Flux superpotential for type IIB string compactifications: [Gukov, Vafa, Witten, 2000]

$$W = \int_{X_6} \Omega\left(z^i\right) \wedge (F - \tau H) \qquad \Omega \in H^{3,0}(X_6, \mathbb{C})$$

zⁱ and *τ* scalar fields (the complex structure moduli and the axio-dilaton)
Internal topological three-form fluxes *F*, *H* ∈ *H*³(*X*₆, ℤ)
Supersymmetric vacuum constraints:

$$\partial_{z^i}W = 0$$
 , $\partial_{\tau}W = 0$, $W = 0$

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

Flux superpotential for type IIB string compactifications: [Gukov, Vafa, Witten, 2000]

$$W = \int_{X_6} \Omega\left(z^i\right) \wedge (F - \tau H) \qquad \Omega \in H^{3,0}(X_6, \mathbb{C})$$

zⁱ and *τ* scalar fields (the complex structure moduli and the axio-dilaton)
Internal topological three-form fluxes *F*, *H* ∈ *H*³(*X*₆, ℤ)
Supersymmetric vacuum constraints:

$$\int_{X_6} \Omega(z^i) \wedge F = 0 \ , \ \int_{X_6} \Omega(z^i) \wedge H = 0 \ , \ \int_{X_6} \partial_{z^i} \Omega\left(z^i\right) \wedge (F - \tau H) = 0$$

 X_6 supports a non-trivial flux configuration with a supersymmetric vacuum only if

$$\langle F,H
angle_{\mathbb{Z}} \subset \left[H^{2,1}(X_6,\mathbb{C}) \oplus H^{1,2}(X_6,\mathbb{C})
ight] \cap H^3(X_6,\mathbb{Z})$$

defines a two-dimensional sublattice

Setup: M- (or F-)theory compactified on a Calabi-Yau fourfold X_8 Flux superpotential:

$$W = \int_{X_8} \Omega(z^i) \wedge G \qquad \Omega(z^i) \in H^4(X_8, \mathbb{C})$$

- *zⁱ* complex structure moduli
- $G \in H^4(X_8, \mathbb{Z})$ internal topological four-form flux

Supersymmetric vacuum constraints imply

 X_8 supports a non-trivial flux configuration with a supersymmetric vacuum only if

$$\langle G \rangle_{\mathbb{Z}} \subset \left[H^{4,0}(X_8,\mathbb{C}) \oplus H^{2,2}(X_8,\mathbb{C}) \oplus H^{0,4}(X_8,\mathbb{C})
ight] \cap H^4(X_8,\mathbb{Z})$$

 \Rightarrow one-dimensional sublattice

Setup: Type IIB string theory compactified on a Calabi-Yau threefold X_6

BPS black hole solutions evolve towards a critical point of the central charge

$$Z(Q) = \frac{\int_{X_6} Q \wedge \Omega(z^i)}{\int_{X_6} \Omega(z^i) \wedge \Omega(z^i)} \qquad \Omega(z^i) \in H^{3,0}(X_6, \mathbb{C})$$

- *zⁱ* complex structure moduli
- $Q \in H^3(X, \mathbb{Z})$ charge of the black hole

Attractor points: Critical points of Z(Q)

• For |Z(Q)|
eq 0: $Q \in H^{3,0}(X_6,\mathbb{C}) \oplus H^{0,3}(X_6,\mathbb{C})$

If $|Z(Q)| \neq 0$, X_6 has a rank-two attractor point only if $(Q, Q') = [U^{3,0}(X, C)] \oplus U^{0,3}(X, C)] \oplus U^{3,0}(X, C)$

$$\langle Q,Q'
angle_{\mathbb{Z}}\subset \left[H^{3,0}(X_6,\mathbb{C})\oplus H^{0,3}(X_6,\mathbb{C})
ight]\cap H^3(X_6,\mathbb{Z})$$

defines a two-dimensional sublattice

Flux vacua for type IIB string compactifications:

$$\langle F,H \rangle_{\mathbb{Z}} \subset \left[H^{2,1}(X_6,\mathbb{C}) \oplus H^{1,2}(X_6,\mathbb{C})
ight] \cap H^3(X_6,\mathbb{Z})$$

 \Rightarrow two-dimensional sublattice of $H^3(X_6,\mathbb{Z})$ with definite Hodge type

Rank-two attractor points for type IIB string compactifications:

$$\langle \mathcal{Q}, \mathcal{Q}'
angle_{\mathbb{Z}} \subset \left[\mathcal{H}^{3,0}(X_6,\mathbb{C}) \oplus \mathcal{H}^{0,3}(X_6,\mathbb{C})
ight] \cap \mathcal{H}^3(X_6,\mathbb{Z})$$

 \Rightarrow two-dimensional sublattice of $H^3(X_6,\mathbb{Z})$ with definite Hodge type

Flux vacua for M- (or F-)theory compactifications:

$$\langle G \rangle_{\mathbb{Z}} \subset \left[H^{4,0}(X_8,\mathbb{C}) \oplus H^{2,2}(X_8,\mathbb{C}) \oplus H^{0,4}(X_8,\mathbb{C})
ight] \cap H^4(X_8,\mathbb{Z})$$

 \Rightarrow one-dimensional sublattice of $H^4(X_8,\mathbb{Z})$ with definite Hodge type

Arithmetic Geometry

Assume that

$$X = \{f_i(x_k) = 0\} \quad f_i(x) \in \mathbb{Z}[x_1, \ldots, x_m]$$

is some (affine or projective) complex variety

• Treat X to be defined over the finite field \mathbb{F}_{p^r} with p^r elements (p prime, $r \in \mathbb{N}$)

$$X/\mathbb{F}_{p^r} := \{\overline{f}_i(x) = 0\} \subset (\mathbb{F}_{p^r})^m$$

Arithmetic Geometry

Assume that

$$X = \{f_i(x_k) = 0\} \quad f_i(x) \in \mathbb{Z}[x_1, \ldots, x_m]$$

is some (affine or projective) complex variety

• Treat X to be defined over the finite field \mathbb{F}_{p^r} with p^r elements (p prime, $r \in \mathbb{N}$)

$$X/\mathbb{F}_{p^r} := \{\bar{f}_i(x) = 0\} \subset (\mathbb{F}_{p^r})^m$$

• (Finite) Number of points

$$N_{p^r}(X) := |X/\mathbb{F}_{p^r}|$$

collected in the generating local zeta function

$$\zeta_{p}(X,T) = \exp\left(\sum_{r=1}^{\infty} N_{p^{r}}(X) \frac{T^{r}}{r}\right)$$

• "Local-to-global principle": $\zeta_p(X, T)$ contain information about the Hodge structure of $H^k(X, \mathbb{Z})$ **Weil conjectures:** Constrain $\zeta_p(X, T)$ strongly

Rationality:

$$\zeta_p(X,T) = \frac{R_1(X,T)\cdots R_{2n-1}(X,T)}{R_0(X,T)\cdots R_{2n}(X,T)} \quad , \ n = \dim_{\mathbb{C}}(X)$$

 $R_k(X, T)$ are polynomials of degree $b^k = \dim(H^k(X, \mathbb{Q}))$ In particular: $R_k(X, T) = \det(\mathbb{1} - TFr_p^{-1})$ for linear maps

$$\operatorname{Fr}_p: H^k(X, \mathbb{Q}_p) \to H^k(X, \mathbb{Q}_p)$$

 $H^k(X, \mathbb{Q}_p)$: *p*-adic cohomology groups

[Weil, 1949]

Weil conjectures: Constrain $\zeta_p(X, T)$ strongly

Rationality:

$$\zeta_p(X,T) = \frac{R_1(X,T)\cdots R_{2n-1}(X,T)}{R_0(X,T)\cdots R_{2n}(X,T)} \quad , \ n = \dim_{\mathbb{C}}(X)$$

 $R_k(X, T)$ are polynomials of degree $b^k = \dim(H^k(X, \mathbb{Q}))$ In particular: $R_k(X, T) = \det(\mathbb{1} - TFr_p^{-1})$ for linear maps

$$\operatorname{Fr}_{p}: H^{k}(X, \mathbb{Q}_{p}) \to H^{k}(X, \mathbb{Q}_{p})$$

 $H^k(X, \mathbb{Q}_p)$: *p*-adic cohomology groups

Important fact:

If $H^k(X,\mathbb{Z})$ has a Hodge substructure, Fr_p becomes block-diagonal $\Rightarrow R_k(X,T)$ factorizes for (almost) all primes p!

[Weil, 1949]

The Modularity Conjecture

Consider an elliptic curve \mathcal{E} :

$$R_1(\mathcal{E}, T) = 1 - a_p T + p T^2$$
 with $a_p = p + 1 - N_p(\mathcal{E})$

Modularity: $f(\tau) := \sum_{p \text{ prime}} a_p q^p$, $q = e^{2\pi i \tau}$ is a modular form of weight two

Consider an elliptic curve \mathcal{E} :

$$R_1(\mathcal{E},T) = 1 - a_p T + p T^2$$
 with $a_p = p + 1 - N_p(\mathcal{E})$

Modularity: $f(\tau) := \sum_{p \text{ prime}} a_p q^p$, $q = e^{2\pi i \tau}$ is a modular form of weight two

For a Calabi-Yau *n*-fold X: If $H^k(X, \mathbb{Z})$ has a two-dimensional Hodge substructure:

 $R_k(X,T) = R_{\Lambda}(X,T) \cdot R_{\Sigma}(X,T) \quad \text{with } R_{\Lambda}(X,T) = 1 - a_p p^{\alpha} T + p^{\beta} T^2$ for some (fixed) $\alpha, \beta \in \mathbb{N}$

Serre's Modularity Conjecture:

[Serre, 1975]

$$f(au):=\sum_{p ext{ prime}} a_p q^p \quad,\quad q=e^{2\pi i au} ext{ is a modular form}$$

Manifolds of this type are called modular

Modularity Conjecture: If $H^k(X,\mathbb{Z})$ has a two-dimensional Hodge substructure, then X is modular and in particular $R_k(X,T)$ has a quadratic factor for (almost) all primes p

Remarks:

- Elliptic curves and rigid Calabi-Yau threefolds $(h^{2,1} = 0)$ are proven to be modular
- Generic Calabi-Yau *n*-folds (with $n \ge 2$) are **not** modular

Modularity Conjecture: If $H^k(X,\mathbb{Z})$ has a two-dimensional Hodge substructure, then X is modular and in particular $R_k(X,T)$ has a quadratic factor for (almost) all primes p

Remarks:

- Elliptic curves and rigid Calabi-Yau threefolds $(h^{2,1} = 0)$ are proven to be modular
- Generic Calabi-Yau *n*-folds (with $n \ge 2$) are **not** modular

Strategy to find supersymmetric flux vacua:

Use Modularity as necessary condition for Hodge substructures

⇒ Compute $R_k(X, T)$ for many primes If $R_k(X, T)$ has a quadratic factor for (almost) all primes, then X is a candidate to have a non-trivial Hodge substructure of $H^k(X, \mathbb{Z})$

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2020],...

Question: How can we find modular Calabi-Yau *n*-folds if these are non-generic? \Rightarrow Analyze not a single manifold but scan the full (complex structure) moduli space

Setup: X_z a family of Calabi-Yau *n*-folds, $z \in \mathbb{C}$ modulus

Algorithm: For $p \ge 7$ prime

- The moduli space reduces to the finite set $z_p \in \mathbb{F}_p$
- For each $z_p \in \mathbb{F}_p$ compute $R_k(X_{z_p}, T)$
- Count $|\{z_{p} \in \mathbb{F}_{p} \mid R_{k}(X_{z_{p}}, T) \text{ factorizes quadratically}\}|$

If there is at least one point of factorization per prime p:

• Find $z \in \overline{\mathbb{Q}} \subset \mathbb{C}$ s.t.

$$z_p \equiv z \mod p$$

is a point of quadratic factorization for each prime p

• If such a $z \in \bar{\mathbb{Q}}$ exists, the (complex) variety X_z is a candidate to be modular

Example: Non-Modular Case

The mirror family of the complete intersection $\mathbb{P}^7[2,2,4]$: [Jockers, S.K., Kuusela, '23]

- Family of Calabi-Yau fourfolds X_z dependent on one modulus $z \in \mathbb{C}$
- Number of quadratic factorizations for each prime $7 \le p \le 317$:

- Many primes p with no point $z_p \in \mathbb{F}_p$ s.t. $R_4(X_{z_p}, T)$ has a quadratic factorization
- The existence of an algebraic modulus $z \in \overline{\mathbb{Q}} \subset \mathbb{C}$ s.t. $H^4(X_z, \mathbb{Z})$ has a two-dimensional sublattice of definite Hodge type is highly unlikely

Example: Modular Case

A one-parameter family of Hulek-Verrill fourfolds HV_z^4 : [Jockers, S.K., Kuusela, '23]

• Number of quadratic factorizations for each prime $7 \le p \le 733$

- At least one point $z_p \in \mathbb{F}_p$ for each prime s.t. $R_4(\mathsf{HV}_{z_p}^4, T)$ has a quadratic factorization
- There is potentially a modulus $z \in \overline{\mathbb{Q}}$ s.t. HV_z^4 is modular

Reconstruction of possible modular points $z \in \overline{\mathbb{Q}} \subset \mathbb{C}$ from *p*-adic data:

• Collection of points $z_p \in \mathbb{F}_p$ with quadratic factorization

prime p	$z_{p} \in \mathbb{F}_{p}$				
p = 11	1	6	8	10	
p = 13	1				
p = 17	1	15			

prime p	$z_p \in \mathbb{F}_p$				
p = 19	1	2	7	17	
p = 23	1	4	5	12	
p = 29	1	6	11	24	

• (Rational) solution $z \in \mathbb{Q}$ s.t. $z_p \equiv z \mod p$ appears in this table:

$$z = 1$$

• $HV_{z=1}^4$ is a candidate for a modular Calabi-Yau fourfold!

A Modular Calabi-Yau Fourfold

Consistency checks:

• Coefficients a_p of quadratic factor

$$R_{\Lambda}(\mathsf{HV}_{1}^{4},T) = 1 - a_{\rho}pT + p^{2}T^{2}$$

give the q-expansion of a unique modular form

• Identified generators of the two-dimensional Hodge substructure

$$\Lambda = \left[H^{3,1}(\mathsf{HV}_1^4, \mathbb{C}) \oplus H^{1,3}(\mathsf{HV}_1^4, \mathbb{C}) \right] \cap H^4(\mathsf{HV}_1^4, \mathbb{Z})$$

by $\operatorname{Re}(\nabla_z \Omega(1)), \operatorname{Im}(\nabla_z \Omega(1))$

A Modular Calabi-Yau Fourfold

Consistency checks:

• Coefficients a_p of quadratic factor

$$R_{\Lambda}(HV_{1}^{4}, T) = 1 - a_{p}pT + p^{2}T^{2}$$

give the q-expansion of a unique modular form

• Identified generators of the two-dimensional Hodge substructure

$$\Lambda = \left[H^{3,1}(\mathsf{HV}_1^4,\mathbb{C}) \oplus H^{1,3}(\mathsf{HV}_1^4,\mathbb{C}) \right] \cap H^4(\mathsf{HV}_1^4,\mathbb{Z})$$

by $\operatorname{Re}(\nabla_z \Omega(1)), \operatorname{Im}(\nabla_z \Omega(1))$

• Remainder

$$\Sigma = \left[H^{4,0}(\mathsf{HV}_1^4,\mathbb{C}) \oplus H^{2,2}(\mathsf{HV}_1^4,\mathbb{C}) \oplus H^{0,4}(\mathsf{HV}_1^4,\mathbb{C}) \right] \cap H^4(\mathsf{HV}_1^4,\mathbb{Z})$$

defines suitable four-form fluxes

• In particular:

$$G := C \cdot \operatorname{\mathsf{Re}}(\Omega(z))|_{z=1} \in \Sigma \,, \quad C \in \mathbb{R}$$

So far: Used modularity as a tool to obtain geometric information on X

For flux vacua of type IIB compactified on a Calabi-Yau threefold X:

- X is modular with modular form f_X
- Corresponding to f_X , there exists an (unique) elliptic curve $\mathcal{E}(f_X)$, s.t. $f_X = f_{\mathcal{E}(f_X)}$
- Axio-dilaton constraint: $\int_X \partial_z \Omega(z) \wedge (F \tau H) = 0$
- The axio-dilaton is fixed by the complex structure of $\mathcal{E}(f_X)$ as

$$\tau = \tau(\mathcal{E}(f_X))$$

[Candelas, de la Ossa, Kuusela, McGovern, '23]

Similar for rank-two attractor points:

• f_X determines the area of the event horizon of the attractive BH

[Candelas, de la Ossa, Elmi, van Straten, '19]

Arithmetic geometry can be used as a tool to investigate varieties which are defined over $\mathbb C$

Modularity serves as a necessary condition for (two-dimensional) Hodge substructures, i.e. for

- supersymmetric flux vacua
- rank-two attractor points
- topology changing transition loci?

The corresponding modular form f_X contains physical information

- \bullet For type IIB flux vacua: The axio-dilaton τ
- For rank-two attractor points: The BH entropy S_{BH}