

Muon Collider Progress

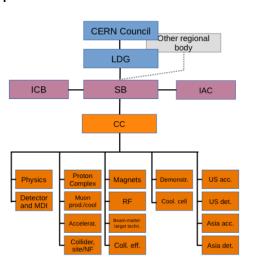
D. Schulte
On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

BNL, June, 2024

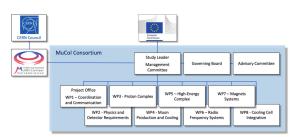
Collaboration

Goal is to develop high-energy muon collider as option for particle physics


- Muon collider promises sustainable approach to the energy frontier
 - limited power consumption, cost and land use
- Technology and design advances in past years
- Reviews in Europe and US did not find any unsurmountable obstacle
- Accelerator R&D Roadmap identifies required work

International collaboration with many members

- Support from the EU
- Reports to LDG/CERN Council
- And other funding agencies in the future


Goal is staged approach

- Collider operational by 2050
- Reach 10+ TeV

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
10 TeV	$10 {\rm \ ab^{-1}}$
14 TeV	20 ab^{-1}

Target integrated luminosities are based on physics Increase as E_{cm}^2

MoC and Design Study Partners

Ţ			
MuCol		UK	RAL
			UK Research and Innovation
IEIO	CERN		University of Lancaster
FR	CEA-IRFU		University of Southampton
	CNRS-LNCMI		
DE	DESY		University of Strathclyde
	Technical University of Darmstadt		University of Sussex
	University of Rostock		Imperial College London
	KIT		Royal Holloway
SE	ESS		University of Huddersfield
SE			University of Oxford
	University of Uppsala		University of Warwick
PT	LIP		University of Durham
NL	University of Twente		·
FI	Tampere University	US	Iowa State University
LAT	Riga Technical Univers.		Wisconsin-Madison
СН	PSI		Pittsburg University
	University of Geneva		Old Dominion
	EPFL EPFL		BNL
			Florida State University
EST	Tartu University		RICE University
BE	Univ. Louvain		MCL Offiversity

IT	INFN
	INFN, Univ., Polit. Torino
	INFN, Univ. Milano
	INFN, Univ. Padova
	INFN, Univ. Pavia
	INFN, Univ. Bologna
	INFN Trieste
	INFN, Univ. Bari
	INFN, Univ. Roma 1
	ENEA
	INFN Frascati
	INFN, Univ. Ferrara
	INFN, Univ. Roma 3
	INFN Legnaro
	INFN, Univ. Milano Bicocca
	INFN Genova
	INFN Laboratori del Sud
	INFN Napoli
Mal	Univ. of Malta

	IHEP			
	Peking University			
AU	НЕРНҮ			
	TU Wien			
ES	13M			
	CIEMAT			
	ICMAB			
КО	KEU			
	Yonsei University			
India	CHEP			
US	FNAL			
	LBL			
	JLAB			
	Chicago			

Sun Yat-sen University

China

Tennessee University

MuCol

US P5: The Muon Shot

The New Hork Times

Particle Physics Project Prioritisation Panel (P5) endorses muon collider R&D: "This is our muon shot"

Recommend joining the IMCC Consider FNAL as a host candidate US is already participating to the collaboration

AUGUST 28, 2023 | 10 MIN READ

Particle Physicists Dream of a Muon Collider

After years spent languishing in obscurity, proposals for a muon collider are regaining momentum among particle physicists

nature

Explore content × About the journal × Publish with us × Subscribe

nature > editorials > article

EDITORIAL | 17 January 2024

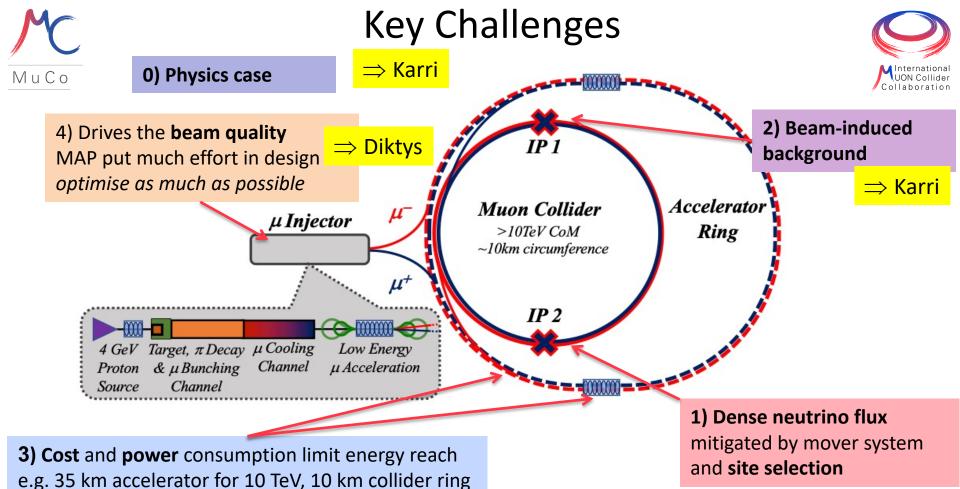
US particle physicists want to build a muon collider — Europe should pitch in

A feasibility study for a muon smasher in the United States could be an affordable way to maintain particle physics unity.

Particle Physicists Agree on a Road Map for the Next Decade

A "muon shot" aims to study the basic forces of the cosmos. But meager federal budgets could limit its ambitions.

US ambition:


- Want to reach a 10 TeV parton level collisions
- Timeline around 2050
- Fermilab option for demonstator and hosting
- Reference design in a "few" years

Informal discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a **global collaboration**
- Addendum to CERN-DoE-NSF agreement is in preparation

IMCC prepares options for Europe and for the US in parallel

D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024

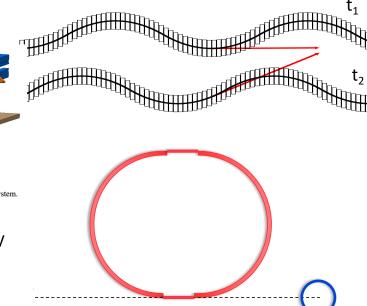
Also impacts **beam quality**D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024

Muon Decay and Neutrino Flux

Muon decays in collider ring

- Impact on detector
- Have to avoid dense neutrino flux

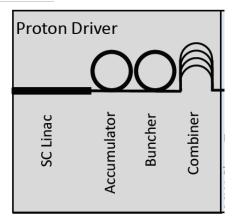
h z d L a Φ R_e

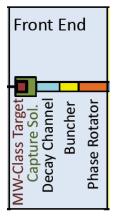

Aim for **negligible impact from arcs**

- Similar impact as LHC
- At 3 TeV this is the case for 200 m depth
- At 10 TeV go from acceptable to negligible with mover system
 - Mockup of mover system planned
 - Impact on beam to be checked

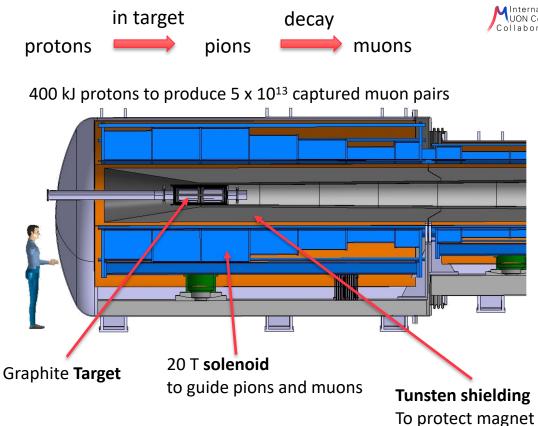
Impact of experimental insertions

- 3 TeV design acceptable with no further work
- But better acquire land in direction of experiment, also for 10 TeV
- Detailed studies idetified location and orientation close to CERN
 - Poiint to uninhabited area in Jura and Mediterranian sea


Karri



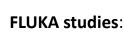
Proton Complex and Target



5 GeV proton beam, 2 MW = 400 kJ x 5 Hz Power is at hand Will now look into 4 MW

ESS and Uppsala are woring on merging beam into high-charge pulses

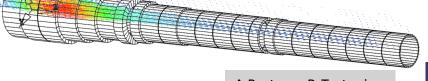
 Indication is that 10 GeV would be preferred



Target Technologies

Target solenoid design ongoing

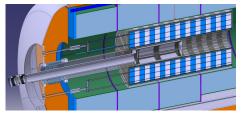
Either large bore 20 T HTS or 15 T LTS with 5 T insert



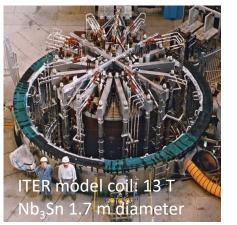
2 MW target: stress in target, shielding, vessel OK

Target

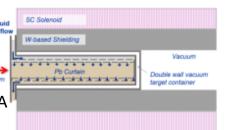
Need to have closer look at window

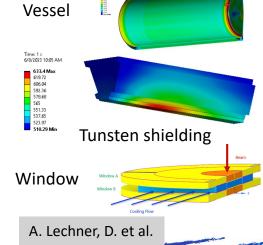

Cooling OK

HTS target solenoid: 20 T, 20 K


A Portone, P. Testoni, J. Lorenzo Gomez, F4E

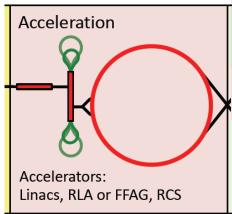
Integration

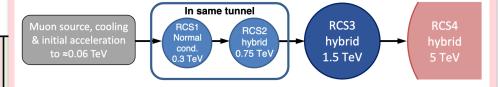



Cooling, vacuum, mechanics, ...

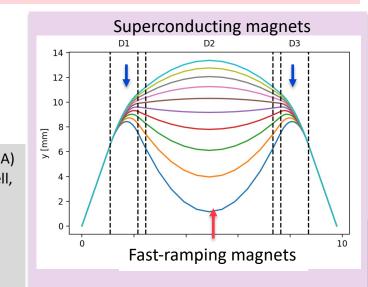
Our work is relevant for fusion

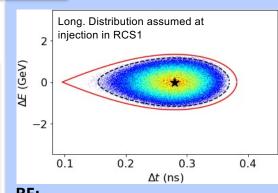
Serious alternative
Also needed for FCC-ee
Collaboration with ENEA




D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024

Acceleration Complex





Core is sequence of pulsed synchrotron (0.4-11 ms)

Alternative FFA

RF:

- 1.3 GHz cavities appear possible
- in spite of high bunch charge

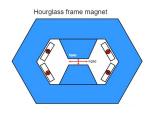
Lattice:

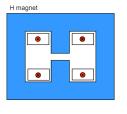
Hybrid design works Can spread RF in the arcs

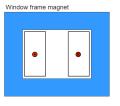
Lattice and integration: A. Chance et al. (CEA) Long. dynamics and RF systems: H. Damerell, U. van Rienen, A. Grudiev et al. (Rostock, Milano, CERN)

Power converter: F. Boattini et al. Magnets: L. Bottura et al. (LNCMI, Darmstadt, Bologna, Twente) FFA: S. Machida et al. (RAL)

D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024




Fast-ramping Magnet System



Efficient energy recovery for resistive dipoles (O(100MJ))

Synchronisation of magnets and RF for power and cost

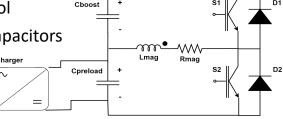
5.07 kJ/m

5.65...7.14 kJ/m

5.89 kJ/m

FNAL 300 T/s HTS magnet

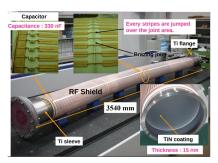
Could consider using HTS dipoles for largest ring


Simple HTS racetrack dipole could match the beam requirements and aperture for static magnets

Differerent power converter options investigated

Commutated resonance

Attractive novel option


- Better control
- Much less capacitors

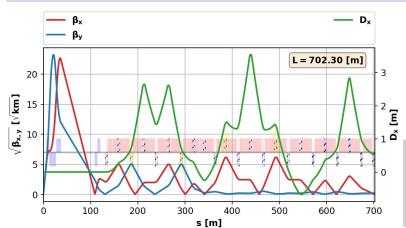
Beampipe study

Eddy currents vs impedance Maybe ceramic chamber with stripes

- F. Boattini et al.
- D. Amorim et al.

MuCol

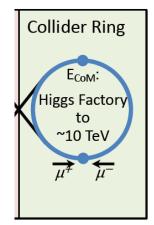
Collider Ring



High performance 10 TeV challenges:

- Very small beta-function (1.5 mm)
- Large energy spread (0.1%)
- Maintain short bunches

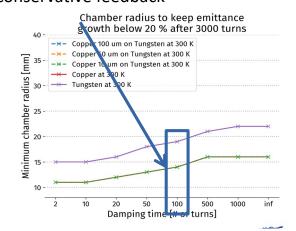
10 TeV collider ring in progress:


- around 16 T HTS dipoles or lower Nb₃Sn
- final focus based on HTS
- Need to further improve the energy acceptance by small factor

3 TeV:

MAP developed 4.5 km ring with Nb₃Sn

- magnet specifications in the HL-LHC range
- 5 mm beta-function



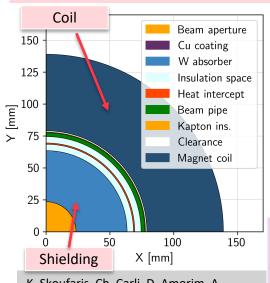
K. Skoufaris, Ch. Carli, support from P. Raimondi, K. Oide, R. Tomas

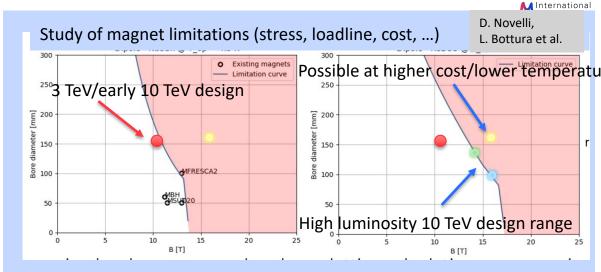
Impedance studies

E. Metral, D Amorim et al. (CERN)

Single beam instability limits OK with conservative feedback

ש. שבוומונב, ועומטוו בטווומבו דוסקובש, בשם וווכבנווק, שועב, שמופ 2024


Collider Ring Technologies


MuCol

Power loss due to muon decay 500 W/m FLUKA simulation of required **shielding**: 20-40 mm tungesten shielding (about OK-safe)

- Few W/m in magnets
- No problem with radiation dose
- ⇒ Magnet coil radius 59-79 mm

K. Skoufaris, Ch. Carli, D. Amorim, A. Lechner, R. Van Weelderen, P. De Sousa, L. Bottura, D. Calzolari et al.

Nb3Sn at 4.5 K and 15 cm aperture Can reach ~11 T, stress and margin limited Maturity expected in 15 years OK for current 3 TeV/early 10 TeV design

Different **cooling scenarios** studied < 25 MW power for cooling possible Shield with CO₂ at 250 K (preferred) or water Support of shield is important for heat transfer Discussion on options for magnet cooling

HTS at 20 K and 10-14 cm aperture Can reach 16-14 T, cost limited

- Factor 3 cost reduction assumed Can reach 16 T and 16 cm with more material or lower temperature Maturity takes likely >15 years
- But maybe OK in 15 years at lower performance, similar to Nb3Sn

Staging

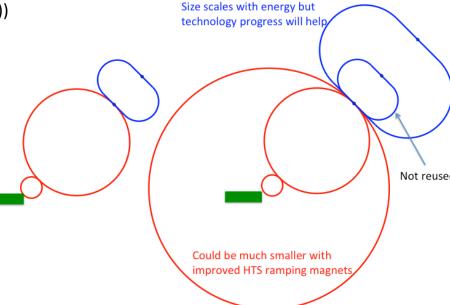
Important timeline drivers:

Magnets

- HTS technology available for solenoids (expect in 15 years)
- Nb₃Sn available for collider ring, maybe lower performance HTS (expect in 15 years)
- High performance HTS available for collider ring (may take more than 15 years)

Muon cooling technology (expect in 15 years, with enough resources)

Detector technologies and design (expect in 15 years))


Energy staging

 Start at lower energy (e.g. 3 TeV, design takes lower performance into account)

Luminosity staging

- Start at with full energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

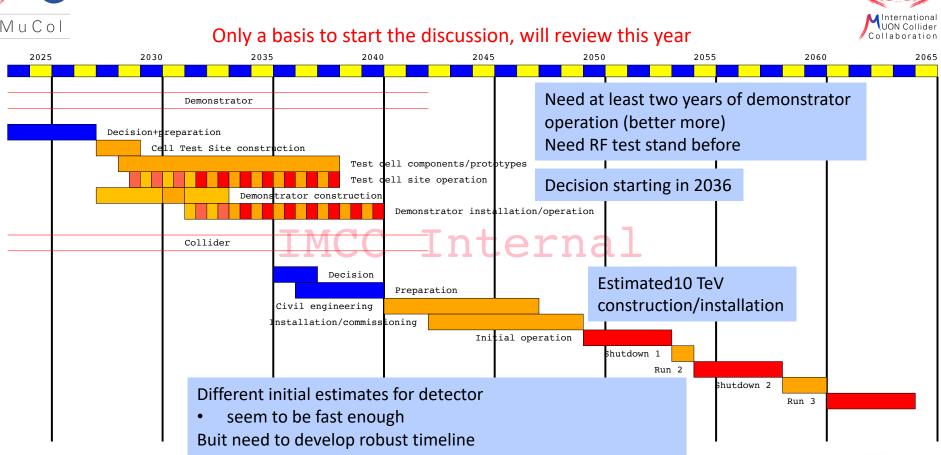
Consider reusing LHC tunnel and other infrastructures

Tentative Staged Target Parameters

Target integrated luminosities

\sqrt{S}	$\int \mathcal{L}dt$
3 TeV	$1 {\rm ~ab^{-1}}$
10 TeV	$10 {\rm ab}^{-1}$
14 TeV	20 ab^{-1}

Need to spell out scenarios


Need to integrate potential performance limitations for technical risk, cost, power, ...

Parameter	Unit	3 TeV	10 TeV	10 TeV	10 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	tbd	13
N	10 ¹²	2.2	1.8	1.8	1.8
f _r	Hz	15 X	5	5	5
P _{beam}	MW	5.3	14.4	14.4	14.4
С	km	4.5	10	15	15
	Т	7	10.5	57	7
ϵ_{L}	MeV m	7.5	7.5%	7.55	7.5
σ_E / E	%	0.1	0.1	tbd	0.1
σ_{z}	mm	5	1.5	tbd	15
β	mm	5	1.5	tbd	1.5
ε	μm	25	25	25	25
$\sigma_{x,y}$	μm	3.0	0.9	1.3	0.9

Tentative Timeline (Fast-track 10 TeV)

Very Short-term Plan

Just finished Interim Report

- Design
- Challenges
- Plan until 2026

IAC has been formed and reviewed interim report as a first task

IAC regular members:

Ursula Bassler (IN2P3, interim Chair), Mauro Mezzetto (INFN) Hongwei Zhao (Inst. of Modern Physics, IMP), Akira Yamamoto (KEK), Maurizio Vretenar (CERN), Stewart Boogert (Cockcroft), Sarah Demers (Yale), Giorgio Apollinari (FNAL)

Experts for Interim Report review

Marica Biagini (INFN), Luis Tabarez (CIEMAT), Giovanni Bisoffi (INFN), Jenny List (DESY), Halina Abramowicz (Tel Aviv), Lyn Evans (CERN)

	CERN-2023-XXX
7.8	Vacuum System
7.9	Instrumentation
7.10	Radiation Protection
7.11	Civil Engineering
7.12	Movers
7.13	Infrastructure
7.14	General Safety Considerations
8	Synergies
8.1	Technologies
8.2	Technology Applications
8.3	Facilities
8.4	Synergies - summary
9	Development of the R&D Programme
9.1	Demonstrator
9.2	RF Test Stand
9.3	Magnet Test Pacility 14
9.4	Other Test Infrastructure required (HiRadMat,)
10	Implementation Considerations 14
10.1	Timeline Considerations 14
10.2	Site Considerations 15
10.3	Costing and Power Consumption Considerations

Will focus on advanced ESPPU:

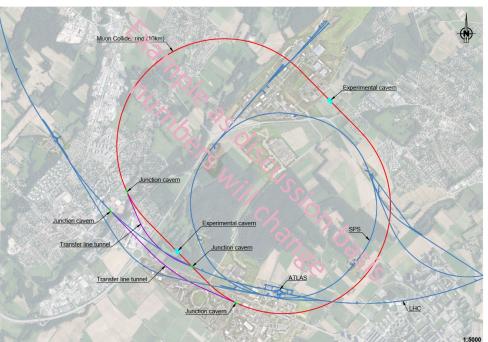
- March 2025, deliver promised ESPPU reports
 - Evaluation report, including tentative cost and power consumption scale estimate
 - **R&D plan**, including some scenarios and timelines

This requires to push as hard as possible with existing resources

ESPPU Plan

Continue to develop green field design

Lattices, components, beam dynamics, ...


Explore implementation at CERN using existing infrastructure (e.g. SPS and LHC tunnels)

Similar effort for FNAL

Develop adjusted parameter tables for implementation at CERN

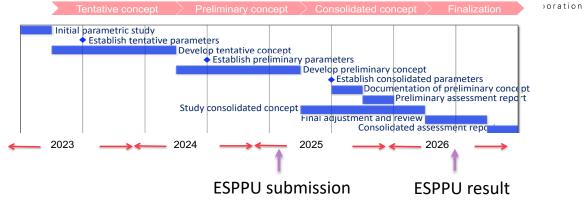
First look is promising:

- Collider ring mitigates neutrino flux from experiments
 - Some work required to ensure all arcs are negligible
- Good connection to LHC tunnel
- Muon beam cooling complex on CERN land injecting into SPS

Expected CM energy reach (robust technology assumptions)

- 2.5 5.5 (8 TeV with two RCS in LHC)
- Need to study implementation of components in existing tunnels
- Could improve with better magnets

Medium-term Plan



March 2025, deliver promised ESPPU reports

February 2027, Fulfill EU contract

Final deliverable is report on all R&D

Expect **US process** after the ESPPU

- Likely US wants a Reference Design
- Demonstrator design

Will fully support the required studies

LDG wants to increase the momentum that we built up

• **EU Roadmap** continues

First exploration shows muon collider can fit on FNAL site

Continuation as attractive option for Europe and for the US

R&D Programme

Broad R&D programme can be distributed world-wide

Muon cooling technology

- RF test stand to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - At CERN, FNAL, ESS, JPARC, ...
 - Workshop in October at FNAL

Magnet technology

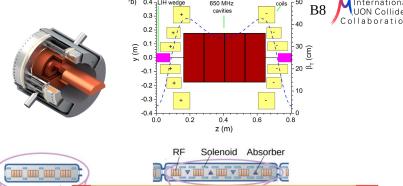
- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Many other technologies are equally important now to support that the muon collider can be done and perform

Training of young people


Downstream Instrumentation and Matching

High-intensity high-energy pion source

Collimation and phase rotation

new technologies

nuon collider can be done and perform

Strong synergy with HFM Roadmap and RF efforts

Synergies and Outreach

Training of young people

Novel concept is particularly challenging and motivating for them

Technologies

- Muon collider needs HTS, in particular solenoids
- Fusion reactors
- Power generators
- Nuclear Magnetic Resonance (NMR)
- Magnetic Resonance Imaging (MRI)
- Magnets for other uses (neutron spectroscopy, detector solenoids, hadron collider magnets)
- Target is synergetic with neutron spallation sources, in particular liquid metal target (also FCC-ee)
- High-efficiency RF power sources and power converter
- RF in magnetic field can be relevant for some fusion reactors
- High-power proton facility
- Facilities such as NuStorm, mu2e, COMET, highly polarized low-energy muon beams
- Detector technologies
- Al and ML

Physics

Conclusion

Muon collider has a compelling physics case

R&D progress is increasing confidence that the collider is a unique, sustainable path to the future

We expect that a first collider stage can be operational by 2050

- If the resources ramp up sufficiently
- If decision-making processes are efficient

The muon collider collaboration has grown since the last ESPPU

See it will grow even more

Strong synergies with other fields ranging from particle physics to societal application

Need to continue ramping up the momentum

Many thanks to the collaboration for all the work

To join contact muon.collider.secretariat@cern.ch

Reserve

Recent Results: Interim Report

IAC regular members:

Ursula Bassler (IN2P3, interim Chair)

Mauro Mezzetto (INFN)

Hongwei Zhao (Inst. of Modern Physics, IMP)

Akira Yamamoto (KEK)

Maurizio Vretenar (CERN)

Stewart Boogert (Cockcroft)

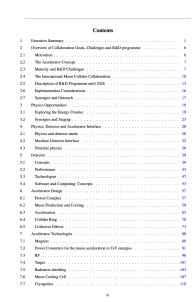
Sarah Demers (Yale)

Giorgio Apollinari (FNAL)

Experts for this review

Marica Biagini (INFN)

Luis Tabarez (CIEMAT)


Giovanni Bisoffi (INFN)

Jenny List (DESY)

Halina Abramowicz (Tel Aviv)

Lyn Evans (CERN)

The IAC reviewed the Interim Report and prepared an excellent report on their findings

	CERN-2023-AXX
8.7	Vacuum System
.9	Instrumentation
.10	Radiation Protection
.11	Civil Engineering
.12	Movers
.13	Infrastructure
.14	General Safety Considerations
t	Synergies
1.1	Technologies
1.2	Technology Applications
3.3	Facilities
1.4	Synergies - summary
•	Development of the R&D Programme
1.1	Demonstrator
2.2	RF Test Stand
.3	Magnet Test Facility
.4	Other Test Infrastructure required (HiRadMat,)
0	Implementation Considerations
0.1	Timeline Considerations
0.2	Site Considerations
0.3	Costing and Power Consumption Considerations

Proposal: EuMAHTS

Luca Botture et al.

Submitted to INFRA-2024-TECH-01-01

Focus on HTS development O(10 Meur) request

Strategy and context

Material and technology

Three core components (6 MEUR)

- 40 T solenoid, 50 mm bore
- 10 T/10 MJ/300 mm solenoid

D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024

HTS undulator

Test infrastructure

WP1 - Coordination and Communication
(L. Bottura, P. Vedrine)
WP2 – Strategic Roadmap
(A. Ballarino, L. Rossi)
WP3 – Industry Co-innovation
(J.M. Perez, S. Leray)
WP4 – HTS Magnets Applications Studies
(P. Vedrine, M. Statera)
WP5 – Materials and Technologies
(D. Bocian. A. Bersani)
WP6 – 40T-class all-HTS solenoid
(B. Bordini, P. Vedrine)
WP7 – 10T/10MJ-class all-HTS solenoid
(S. Sorti, C. Santini)
WP8 – K=2 all-HTS undulator
WP8 – K=2 all-HTS undulator

Country **Status Short name CERN IERO** В **EMFL** Belgium TAU Finland CEA France **ESRF** France **EUXFEL** Germany GSI В Germany **KIT** Germany В INFN Italy В **UMIL** Italy В **UTWENTE** Netherlands В IFJ-PAN **Poland** В PK Poland В CIEMAT Spain **CSIC** Spain PSI Switzerland TERA-CARE Switzerland Α **UNIGE** Switzerland Α **CNRS** France Α **HZDR** Germany Α **RU-NWO** Netherlands

IMCC Organisation

Collaboration Board (ICB)

- Elected chair: Nadia Pastrone
- 50 full members, 60+ total

Steering Board (ISB)

- Chair **Steinar Stapnes**
- CERN members: Mike Lamont, Gianluigi Arduini
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), Pierre Vedrine (CEA), N. Pastrone (INFN), Beate Heinemann (DESY)
- Study members: SL and deputies

Advisory Committee

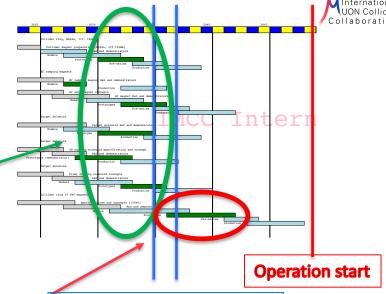
Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

CERN Council Other regional body **LDG ICB** SB IAC CC Proton **Physics** Magnets Demonstr. US acc. Complex Detector Muon Cool, cell RF US det. prod./cool Beam-matter Asia acc. Accelerat. target techn. Collider. Coll. eff. Asia det.

Will integrated the US also in the leadership

Magnet Roadmap


Assume: Need prototype of magnets by decision process

Consensus of experts (review panel):

- Anticipate technology to be **mature in O(15 years)**:
 - HTS solenoids in muon production target, 6D cooling and final cooling
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
 - Nb₃Sn 11 T magnets for collider ring (or HTS if available):
 150mm aperture, 4K
- This corresponds to 3 TeV design
- Could build 10 TeV with reduced luminosity performance
 - Can recover some but not all luminosity later

Still under discussion:

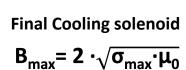
- Timescale for 10 TeV HTS/hybrid collider ring magnets
- For second stage can use HTS or hybrid collider ring magnets

2036+2037 decision process

Strategy:

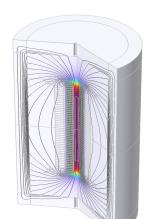
- HTS solenoids
- Nb₃Sn accelerator magnets
- HTS accelerator magnets

Seems technically good for any future project

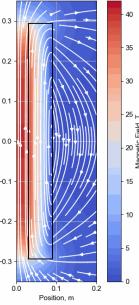


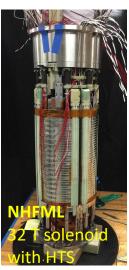
Solenoid R&D

Started **HTS solenoid** development for high fields Synergies with fusion reactors, NRI, power

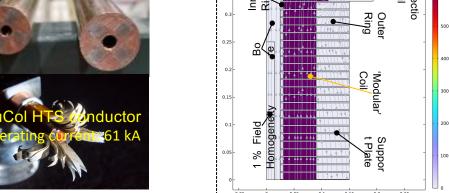

generators for windmills, ...

A Portone, P. Testoni, J. Lorenzo Gomez, F4E


 σ_{max} = 600 MPa

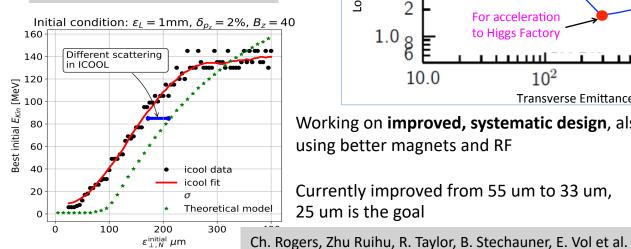

B_{max}≈ 55 T

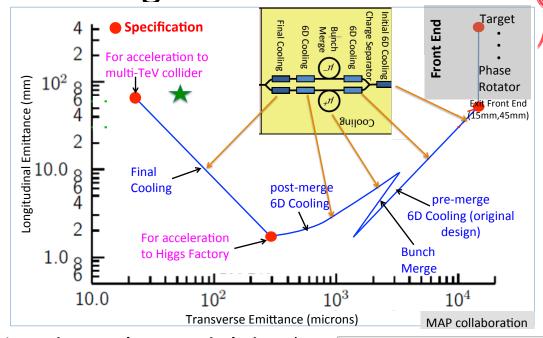
A. Dudarev, B. Bordini, T. Mulder, S. Fabbri

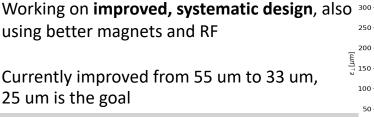


32 T LTS/HTS solenoid demonstrated

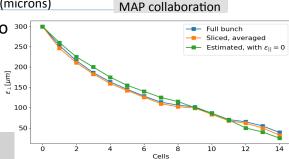
Muon Cooling Principle MuCol Magnetic field Cooling high transversl 0 0 emittance LH2-Absorber Cavities reduced transversal but increased longitudinal emittance Beam direction Charge Separato Final Cooling 5D Cooling Solenoid 5D Cooling Electric field Bunch Merge High-gradient normalconducting cavities C. Rogers, B. Stechauner, Robust absorbers E. Fol et al. (RAL, CERN) energy loss re-acceleration absorber cavities TOP VIEW High-field, superconducting solenoid SIDE VIEW Principle has been demonstrated in MICE Nature vol. 578, p. 53-59 (2020) D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024


Muon Cooling Performance


MAP design achieved 55 um based on achieved fields

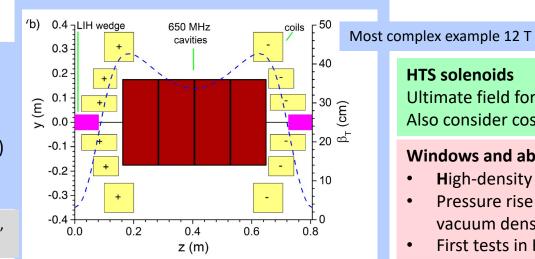

Can expect better hardware

Integrating physics into RFTRACK, a CERN simulation code with singleparticle tracking, collective effects, ...


A. Latina, E. Fol, B. Stechauner at al.

D. Schulte, Muon Collider Progress, LDG meeting, BNL, June 2024

Cooling Cell Technologies

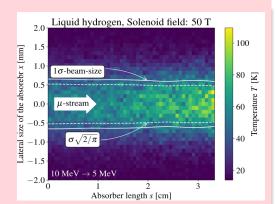

Marco

Are developing example **cooling** cell with integration

- tight constraints
- additional technologies (absorbers, instrumentation,...)
- early preparation of demonstrator facility

L. Rossi et al. (INFN, Milano, STFC, CERN),

J. Ferreira Somoza et al.



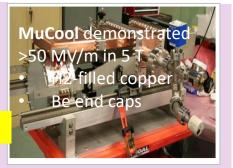
HTS solenoids

Ultimate field for final cooling Also consider cost

Windows and absorbers

- High-density muon beam
- Pressure rise mitigated by vacuum density
- First tests in HiRadMat

RF cavities in magnetic field

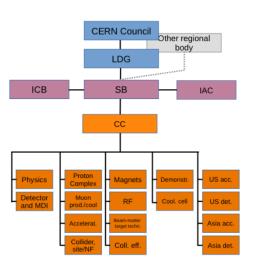

Gradients above goal demonstrated by MAP

New test stand is important

- Optimise and develop the RF
- Different options are being explored
- **Need funding**

D. Giove, C. Marchand, Alexej Grudiev et al. (Milano, CEA, CERN, Tartu)

International Muon Collider Collaboration (IMCC)

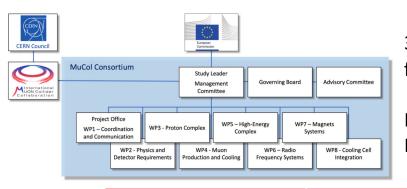

IMCC was founded in 2021

- Reports to CERN Council
- Anticipate it will also report to DoE and other funding agencies
- 50 full members, a few additional contributors

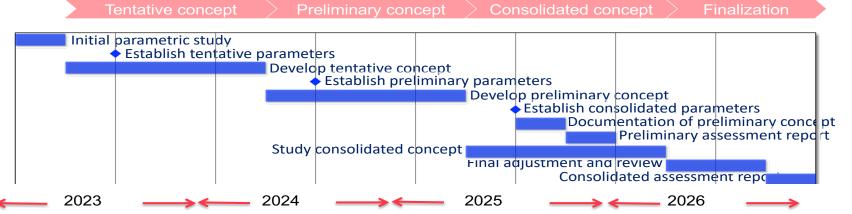
			Description	Aspirational		Minimal	
				[FTEy] [kCHF]		[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
			tems				
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
			across complex				
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0
			natives				
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field	76	2700	29	0
MC FR	2021	2026	solenoids	27.5		22.5	520
MC.FR	2021	2026	Fast-ramping mag-	27.5	1020	22.5	520
MCREHE	2021	2026	net system High Energy com-	10.6	0	7.6	0
MC.RF.HE	2021	2026	plex RF	10.0	U	7.0	U
MCREMC	2022	2026	Muon cooling RF	13.6	0	7	0
MC RETS	2024	2026	RF test stand + test	10	3300	0	0
	2024	2020	cavities	.0	5500	,	,
MC MOD	2022	2026	Muon cooling test	17.7	400	49	100
			module				- 30
MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
			strator design				
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and	13	1250	13	1250
			integration				
			Sum	445.9	11875	193	2445

IMCC goals

- 10 TeV high-luminosity collider
 - Higher energies to be explored later
- Develop initial stage to start operation by 2050
 - Lower energy or luminosity
- Identify potential sites
- Implementing workplan following priorities from Roadmap



MuCol (EU co-funded)



Started March 2023, lasts until early 2027

3 MEUR from the EU, the UK and Switzerland, about 4 MEUR from the partners, CERN leads and contributes

Final deliverable is a report on the full IMCC R&D results EU officer will come on 19th June.

Staging

Important timeline drivers:

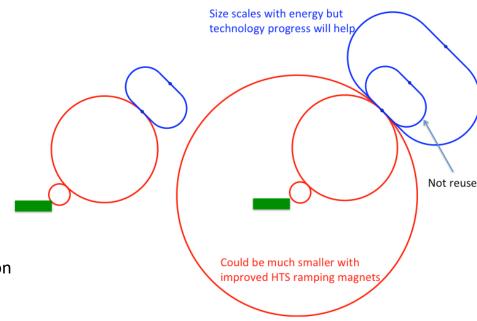
Magnets:

- In O(15 years):
 - HTS technology available for solenoids
 - Nb₃Sn available for collider ring, maybe lower performance HTS
- In O(25 years):
 - HTS available for collider ring

Energy staging

- Start at lower energy (e.g. 3 TeV)
- Build additional accelerator and collider ring later
- 3 TeV design takes lower performance into account

Luminosity staging

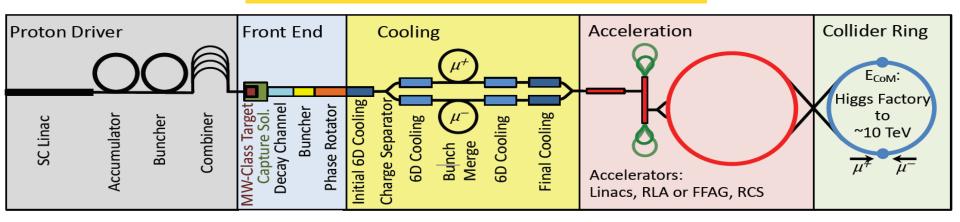

- Start at with full energy, but less luminosity collider ring magnets
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

Muon cooling technologies and integration

Expect to be able with enough resources

Detector technologies and design

Can do the important physics with near-term technology



Muon Collider Overview

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \mu s$

Short, intense proton bunch

lonisation cooling of muon in matter

Acceleration to collision energy

Collision

Protons produce pions which decay into muons muons are captured

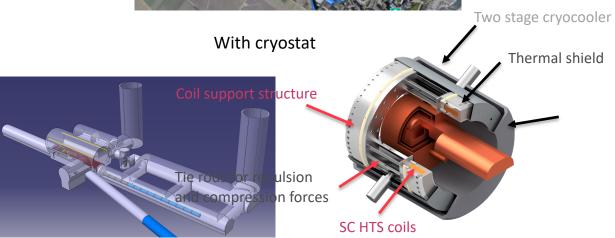
CDR Phase, R&D and Demonstrator Facility

Broad R&D programme can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power


Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

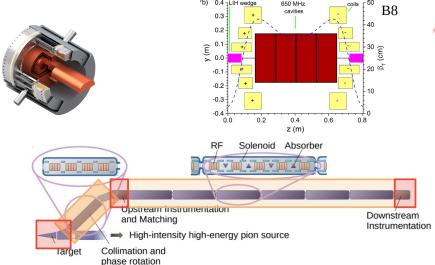
Time-critical Developments

Identified three main technologies that can limit the timeline

Muon cooling technology

- RF test stand to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - Muon beam production and cooling in several cells

Magnet technology


- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

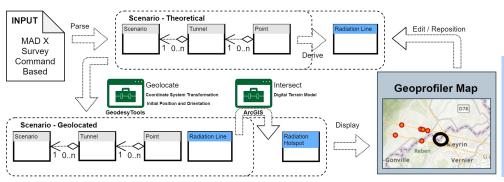
Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Other technologies can be accelerated with sufficient funding

But they are equally important now to support that the muon collider can be done and perform

Site Studies


Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

Some considerations are important

- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

Potential site next to CERN identified

- Mitigates neutrino flux
 - Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)