Lambda transverse polarization in p+p@158 GeV/c beam momentum at NA61/SHINE

Yehor Bondar

Jan Kochanowski University of Kielce

June 21, 2024

Yehor Bondar

Introduction
 Inv mass fit, MC corrections
 Unfolding
 dEdx cut
 KOS cut

6 K0S cut
6 Delta Z cut
7 VTPC clusters cut
8 q value, Γ_L, Γ_R from fit
9 Weighting

- Discovered in 1950
- $\Lambda = uds$

•
$$J^P = \frac{1}{2}^+$$

- Mass: m = 1.116 GeV/c
- Lifetime: $\tau = 2.6 \cdot 10^{-10}$ s, $c\tau = 7.89$ cm.
- Main decay mode: $p\pi^-$ (BR = 63.9%)

In the weak decay $\Lambda \to p + \pi^-$, daughter proton distribution function has the following form:

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} (1 + \alpha \cos \theta^*),$$

where θ^* is the angle between daughter proton momentum and Λ spin vector in hyperon rest frame, and $\alpha = 0.732 \pm 0.014$.

PDG 2020

Transverse polarization definition and calculation

Transverse polarization definition:

1. Rotate from Lab frame to production plane coordinate system:

$$\hat{n}_{x} = \frac{\vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}}{|\vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}|}, \quad \hat{n}_{z} = \frac{\vec{p}_{\Lambda}}{|\vec{p}_{\Lambda}|}, \quad \hat{n}_{y} = \hat{n}_{z} \times$$

$$\vec{n}_{x} \qquad \vec{n}_{z} \qquad \vec{p}_{\text{beam}}$$

$$\vec{n}_{y} \qquad \vec{n}_{y}$$

2. Boost along \hat{n}_z to Λ rest frame.

3. Calculate cosine of angles between proton momentum $\vec{p_p}$ and axes: $\cos \theta_i = p_{p\,i}/|\vec{p_p}|, i = x, y, z$ 4. Fit distribution of the $\cos \theta_i$ to the theoretical prediction and extract P_i – projection of polarization.

$$f(\cos \theta_i) = \frac{1 + \alpha P_i \cos \theta_i}{2},$$

where $\alpha = 0.732 \pm 0.014$.

А

 \hat{n}_x

ccording to parity conservation in the strong interaction, $P_y \equiv P_z \equiv 0$ if the incident proton beam is unpolarized. Thus the measurements of P_y and P_z are usually used for checking the systematic uncertanties.

Wanted result: $\cos \theta_{x,y,z}$ distributions of the proton momentum in $(p_{\rm T}, y)$ bins in the rest frame of Λ produced in a primary vertex of inelastic proton-proton collisions at beam momentum 158 GeV/c $(\sqrt{s_{NN}} = 17.3 \text{ GeV})$ by strong and electromagnetic interaction processes.

Measured result: Distributions of Λ candidates¹ in $(p_{\rm T}, y, \cos \theta_{x,y})$ bins in selected² proton-proton events at beam momentum 158 GeV/c ($\sqrt{s_{NN}} = 17.3$ GeV).

¹selected with track and vertex candidate cuts

²with respect to event cuts

Yehor Bondar

Event (collision) selection cuts

- T2 trigger
- BPD
- no off-time beam particle in $\pm 1.5 \mu s$ window (WFA S1_1)
- Main vertex exists
- Vertex fit is perfect
- Interaction VtxZ within the target or less than 10 cm.

Tracks selection cuts

- One track is negatively charged, second positive
- Min 10 clusters in at least one of VTPC1 and VTPC2 for both tracks
- Energy loss cut: dE/dx within 3σ around Bethe-Bloch. In MC, proton and pion track matching

V^0 candidate selection cuts

• difference between Λ vertex and primary vertex $\Delta z = z_{\Lambda} - z_{PV} \ge 10 \text{ cm}$

Bullet ${\scriptstyle \bullet}$ corresponds to cuts that cannot be transformed directly in MC

$m_{\rm inv}$ distributions fitting procedure

MC correction on MC data: closure test

Use **first half** of the MC data to calculate N_i^{MCsim} , and **second half** is to be corrected. Divide 4D space $(x_F, p_T, \cos \theta_j, \phi), j = x, y$ to bins.

Based on invariant mass m_{inv} distribution in particular $(x_F, p_T, \cos \theta_j, \phi), j = x, y$ bin, and calculate amount of Λ 's in this bin as N_i^{sel} .

$$N_i^{\text{corrected}} = N_i^{\text{sel}} \times \frac{N_i^{\text{MCsim}}}{N_i^{\text{MCsel}}},\tag{1}$$

Uncertainty of the yields is $\Delta N = \sqrt{N}$ and ΔN_i^{sel} is from fit, hence

$$\frac{\Delta N_i^{\text{corrected}}}{N_i^{\text{corrected}}} = \sqrt{\left(\frac{\Delta N_i^{\text{sel}}}{N_i^{\text{sel}}}\right)^2 + \left(\frac{\Delta N_i^{\text{sel}}}{N_i^{\text{sel}}}\right)^2 + \left(\frac{\sqrt{N_i^{\text{MCsim}}}}{N_i^{\text{MCcsim}}}\right)^2}$$

 N_i — number of entries at bin *i* of $(p_T, y, \cos \theta_i)$,

 $N_i^{\text{corrected}}$ — corrected number of Λ ,

 $N_i^{\rm sel}$ — number of Λ candidates fitted in $m_{\rm inv}$ distributions,

 N_i^{MCsim} — number of Λ hyperons produced in the simulated primary interactions.

Binning

 $\begin{array}{l} x_F: -0.5, -0.3, -0.2, -0.1, -0.05, 0, 0.05, 0.1, 0.2, 0.3, 0.5. \\ p_T(\text{GeV}/c): 0, 0.2, 0.4, 0.8, 1.2 \\ \cos \theta_{x,y}: 10 \text{ bins in } [-1, 1] \\ \phi \in [-\pi, \pi] \text{ is defined as polar angle in } (z, y) \text{ and } (x, z) \text{ plane, 5 bins} \end{array}$

 ϕ binning in (z, y) plane for $\cos \theta_x$

 ϕ binning in (x, z) plane for $\cos \theta_y$

We expect independence of spectra on ϕ , but different acceptance leads to different yields in these ϕ bins. Ways to fit $(\cos \theta, \phi)$ yields:

- Fit all 50 points to $f(\cos \theta, \phi) = (1 + 0.732 P \cos \theta)/2$,
- Find average across 5 ϕ bins, reject max 1 point if χ^2 contribution > 3, then in $\cos \theta$ distr, reject max 2 point if χ^2 contribution > 3.

For EPOS and FTFP, we expect $P_x \equiv P_y \equiv 0$.

Let's try these methods for closure test on two halves of EPOS (**EPOS1**, **EPOS2**), EPOS/FTFP and vice versa.

Epos1/Epos2 correction - all points - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

Epos1/Epos2 correction - point removal - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

Yehor Bondar

FTFP1/FTFP2 correction - all points - $x_F \in (-0.1, -0.05), p_T \in (0.2, 0.4)$

FTFP1/FTFP2 correction - point removal - $x_F \in (-0.1, -0.05), p_T \in (0.2, 0.4)$

FTFP1/FTFP2 and vice versa correction - point removal $x_F \in (-0.1, -0.05), p_T \in (0.2, 0.4)$

 χ^2 / ndf

N

P_y

12.29/7

3.274e+04 ± 1.831e+02

0.006978 ± 0.012645

EPOS/FTFP correction - all points - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

EPOS/FTFP correction - point removal - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

Yehor Bondar

EPOS/FTFP and v.v. correction - point removal - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

- EPOS-EPOS and FTFP-FTFP corrections: all-points and with-removal methods compatible with 0,
- EPOS-FTFP and vice versa corrections: introduces bias up to several % that may be treated (?) as systematic uncertainty
- \bullet In result, effect is expected around 10% with syst. and stat. uncertainties of several %

Problem: As measured distribution m_i is disturbed truth distribution t by some response matrix R by $m_i = \sum_j R_{ij} t_j$, the problem is to find an estimator for t, \hat{t} from known m and R. In my case, R_{ij} is probability Λ reconstructed in bin i given generated in bin j, and was constructed using matched Λ .

1. Simple matrix inversion: $\hat{t} = R^{-1}m$.

Drawback: high variance

2. Bayesian Unfolding: init guess $\hat{t}_i^{(0)}$ is uniform, then update using Bayes' theorem:

$$\hat{t}_{i}^{(new)} = \frac{1}{\sum_{j=1}^{N} R_{ji}} \sum_{j=1}^{N} \left(\frac{R_{ji} t_{i}}{\sum_{k=1}^{N} R_{jk} t_{k}} \right) m_{j}$$

Regularization parameter is no. of iterations: 3 iterations was used (the fourth iteration introduced change of $\chi^2 < 1$). Drawback: Not actually Bayesian.

Response Matrix: FTFP

epos unfolded (RooUnfoldInvert) by ftfp, $x_{F} \in (-0.05,0), p_{T} \in (0.2,0.4)$

epos unfolded (RooUnfoldBayes4) by ftfp, $x_{F} \in (-0.05,0)$, $p_{T} \in (0.2,0.4)$

epos unfolded (RooUnfoldInvert) by ftfp, $x_{r} \in (-0.05,0)$, $p_{\tau} \in (0.2,0.4)$

epos unfolded (RooUnfoldBayes4) by ftfp, $x_{F} \in (-0.05,0)$, $p_{T} \in (0.2,0.4)$

Unfolding by inversion: FTFP

In bin $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$:

Method	$P_x(\%)$	$P_y(\%)$	
Unfold Bayes	$4.3 {\pm} 0.8$	$1.4{\pm}0.4$	
Unfold Invert	$2.8{\pm}0.8$	-1.0 ± 0.7	
Bin-by-bin all points	$3.4{\pm}1.0$	$-1.4{\pm}1.0$	
Bin-by-bin point removal	$3.5{\pm}1.0$	-0.3 ± 1.1	

dE/dx cut analogy in MC

Impact parameter cut

The cut is an ellipse with semi-axes along x 2 cm and along y 1 cm. Pretty y-pT independent picture.

Yehor Bondar

Lambda transverse polarization in p+p@158 GeV/c beam momentum at NA61/SHINE

Yehor Bondar

220

200

180

160

140

120

100

80

¥.08 1.1

Invariant mass of A vs K⁰₆, x_ec(-0.05,0), p_ec(0.2,0.4) GeV/c, cose_ec(0.0,0.2) ¢ bin 3

0.4

0.35

1.12

fraction of of both Lambda and K0S candidates per all Lambda candidates:

$$\frac{\#(|m_{\pi^+\pi^-} - m_{K0S}| < 0.02) \cup \#(|m_{p\pi^-} - m_{\Lambda}| < 0.02)}{\# \text{ entries in Lambda hist}}$$

Yehor Bondar

• m_{inv} (K_0^S, Λ) for MC (proton-pion matching) is useless, for data (dE/dx cut) shows both candidates • Idea is to somehow count no. of K_0^S that mimic in Lambda and subtract it

$\Delta z > 10 \text{ cm}, y \in (0, 0.25)$

$\Delta z > 40 \text{ cm}, y \in (0.75, 1.25)$

y∈(0.75,1.25), p_⊤∈(0.4,0.8) y∈(0.75,1.25), p_{_}∈(0.4,0.8) 7000 Entries - DATA DATA dEdx cut 10⁶ 6000 EPOS - FTEP 10[£] EPOS match cut FTFP match cut 5000 EPOS p+pi match cut – FTFP p+pi match cut 4000 104 3000 10 epos+ppi match 2000 epos+Λ match 10² epos+ppi match+Dz epos+Λ match+Dz 1000 data+dEdx 20 160 200 ō 40 60 80 100 120 140 180 data+dEdx+Dz ∆z [cm] -0.80.2 0.4 0.6 0.8 <u>~</u>1 -0.6 $\cos \theta_{x}$

y∈(1.25,2), p_T∈(0.4,0.8)

Relative bias $y \in (0.75, 1.25)$, $p_{-} \in (0.8, 1.2)$

Relative bias $y \in (0.75, 1.25)$, $p_{\tau} \in (0.8, 1.2)$

But, the signal is integral of asymm BreitWigner PDF

Relative stat $y \in (0.75, 1.25)$, $p_{\tau} \in (0.8, 1.2)$

But, the signal is integral of asymm BreitWigner PDF. The farther from midrapidity the worse...

Relative stat y∈(0.25,0.75), p₊∈(0.8,1.2)

But, the signal is integral of asymm BreitWigner PDF. The farther from midrapidity the worse...

VTPC1+VTPC2 Clusters in $y \in (0.75, 1.25), p_T \in (0.8, 1.2)$ in data

with dE/dx cut

with dE/dx cut and $\Delta z > 40$ cm

Γ_L on invmass hists

 Γ_L on invmass hists $y \in (0.25, 0.75), p_T \in (0.8, 1.2)$:

Width for EPOS/FTFP/data are different. Yehor Bondar Lambda transverse polarization in p+p@158 GeV/c beam momentum at NA61/SHINE

q value

q value on invmass hists $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$:

q value

q value on invmass hists $x_F \in (-0.3, -0.2), p_T \in (0.4, 0.8)$:

q value

q value on invmass hists $x_F \in (-0.3, -0.2), p_T \in (0.8, 1.2)$:

$\Gamma_{L,R}$ on invmass hists

q value on invmass hists $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$:

$\Gamma_{L,R}$ on invmass hists

q value on invmass hists $x_F \in (-0.3, -0.2), p_T \in (0.4, 0.8)$:

$\Gamma_{L,R}$ on invmass hists

q value on invmass hists $x_F \in (-0.3, -0.2), p_T \in (0.8, 1.2)$:

Without weighting for 4-dim bin i, the multiplicative factor is:

$$c_{MC} = \frac{\int_{\text{bin}} \left[\frac{d^2 n}{dx_F dp_T}\right]^{\text{MC}}}{\int_{\text{bin}} \left[\frac{d^2 n}{dx_F dp_T}\right]^{\text{MC}} \epsilon(x_F, p_T, \cos \theta, \phi)} = \frac{\frac{1}{N_{\text{evt}}} \sum_{gen \in bin} 1}{\frac{1}{N_{\text{evt}}} \sum_{sel \in bin} 1},$$
(2)

(The fact that MC distribution is uniform in $(\cos \theta, \phi)$ was taken into account) With weighting for bin *i*, we have to include $w = (\frac{d^2n}{dx_F dp_T})^{\text{DATA}} / (\frac{d^2n}{dx_F dp_T})^{\text{MC}}$ term in both integrals/sums:

$$c_{MC} = \frac{\sum_{gen} 1 \cdot \left(\frac{d^2 n}{dx_F dp_T}\right)^{\text{DATA}} / \left(\frac{d^2 n}{dx_F dp_T}\right)^{\text{MC}}}{\sum_{sel} 1 \cdot w} = \frac{N_{\text{evt}}^{\text{DATA}} \left(\frac{d^2 n}{dx_F dp_T}\right)^{\text{DATA}}}{\sum_{sel} 1 \cdot w}$$
(3)

So, the value $w = w(x_F, p_T)$ is a weight for each Λ candidate for m_{inv} fitting calculated for specific (x_F, p_T) of this Λ candidate, hence interpolation is needed.

- linear interpolation for $\left(\frac{d^2n}{dx_F dp_T}\right)^{MC}$ is possible using the distribution shown below (histogram).
- Data interpolation: linear across x_F , p_T spectra based on fitted inversed slope parameter T for fixed x_F bin. (at midrapidity, $x_F \in (-0.1, 0)$ gives $T = 143.2 \pm 2.7$, $x_F \in (0, 0.1)$ gives $T = 140.9 \pm 2.8$, $y \in (-0.25, 0.25)$ gives $T = 158.2 \pm 3.6$, A.Wilczek paper says T = 160.7)

Weighted EPOS-FTFP and FTFP-EPOS correction

EPOS corrected by FTFP:

$$N_{i}^{\text{corrected}} = N_{i}^{\text{EPOS sel}} \times \frac{N_{\text{evt}}^{\text{FTFP}} (\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{EPOS}}}{\sum_{sel \in bin}^{\text{FTFP}} 1 \cdot \left[(\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{EPOS}} / (\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{FTFP}} \right]}$$
(4)

FTFP corrected by EPOS:

$$N_{i}^{\text{corrected}} = N_{i}^{\text{FTFP sel}} \times \frac{N_{\text{evt}}^{\text{EPOS}} (\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{FTFP}}}{\sum_{sel \in bin}^{\text{EPOS}} 1 \cdot \left[(\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{FTFP}} / (\frac{d^{2}n}{dx_{F} dp_{T}})^{\text{EPOS}} \right]}$$
(5)

Data corrected by FTFP:

$$N_{i}^{\text{corrected}} = N_{i}^{\text{DATA sel}} \times \frac{N_{\text{evt}}^{\text{FTFP}} (\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{DATA}}}{\sum_{sel \in bin}^{\text{FTFP}} 1 \cdot \left[(\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{DATA}} / (\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{FTFP}} \right]}$$
(6)

Data corrected by EPOS:

$$N_{i}^{\text{corrected}} = N_{i}^{\text{DATA sel}} \times \frac{N_{\text{evt}}^{\text{EPOS}}(\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{DATA}}}{\sum_{sel \in bin}^{\text{EPOS}} 1 \cdot \left[(\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{DATA}} / (\frac{d^{2}n}{dx_{F}dp_{T}})^{\text{EPOS}} \right]}$$

(7)

EPOS/FTFP weighted correction - all points - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

EPOS/FTFP weighted correction - point removal - $x_F \in (-0.05, 0), p_T \in (0.2, 0.4)$

Backup Slides

EPOS1.99 CRMC v1.4 generator, eGeneratorFinal Lambdas have the following parent:

Summary: No Ξ — probably because no weak decay in EPOS, Ξ s are eGeneratorFinal and decayed in Geant.

PID	particle	abundance
2212	р	0.4775
3212	Σ^0	0.1987
3224	Σ^{*+}	0.0768
3214	Σ^{*0}	0.0541
3114	Σ^{*-}	0.0303
13224	$\Sigma^{+}(1670)$	0.0125
13222	$\Sigma^{+}(1660)$	0.0125
42212	$N^+(1710)$	0.0118
22124	$N^+(1700)$	0.0118
32124	$N^+(1720)$	0.0117
42112	$N^0(1710)$	0.0070
21214	$N^0(1700)$	0.0070
31214	$N^0(1720)$	0.0070
13216	$\Sigma(1915)^{0}$	0.0059
23214	$\Sigma(1940)^{0}$	0.0058
:		

In FTFP (Geant4 v10.7.0), no info about resonance source, only implemented since Shine v1r21p0 (Geant4 v10.7.0.shine.2).

- directly from proton
- from Σ^0 (e.-m. decay), weak decays: Ξ , Ω , Ξ_c^0 , etc.
- Double cascades: from $\Omega^- \to \Xi^0, \Xi^-, \, \Omega^0_c \to \Xi^0$

1		
particle	abundance	
р	0.73517	
Σ^0	0.254763	
Ξ^-	0.00518028	
Ξ^0	0.0039818	
Ξ_c^0	0.000741412	
Ω^{-}	0.000163111	
	$\begin{array}{c} \text{particle} \\ \text{p} \\ \Sigma^{0} \\ \Xi^{-} \\ \Xi^{0} \\ \Xi^{0}_{c} \\ \Omega^{-} \end{array}$	
Generator Λ production

x_F∈(-0.4,-0.3)

x_F∈(-0.3,-0.2)

x_F∈(-0.2,-0.1)

x_F∈(-0.1,0)

x_F∈(0,0.1)

x_F∈(0.1,0.2)

FTFP/EPOS Lambda production + binning

The study was performed on the following data:

/eos/experiment/na61/data/prod/p_LH_158_09/026_14b_v0r8p0_pp_slc6_phys_PP/ /eos/experiment/na61/data/prod/p_LHT_158_10/047_17c_v1r17p1_pp_centos7_phys/ /eos/experiment/na61/data/prod/p_LHT_158_11/075_17c_v1r17p1_pp_centos7_phys/

FROTIOF MC Luminance production (200 mln events):

/eos/experiment/na61/data/Simulation/p_LHT_158_09_beam_mode_Luminance/v1r19p1/ /eos/experiment/na61/data/Simulation/p_LHT_158_10_beam_mode_Luminance/v1r19p1/

EPOS MC production (100 mln events):

/eos/experiment/na61/data/Simulation/p_LHT_158_09/v14b026_v0r8p0_pp_slc5_pp/SHOE
/eos/experiment/na61/data/Simulation/p_LHT_158_10/v14e032_v1r6p0_pp_slc5_pp/SHOE

Event (collision) selection cuts

	Events, mln
Events	56.0
T2 cut	52.0
WFA S11 cut	49.4
BPD cut	44.4
Primary Vertex exists	44.1
Vertex Fitted perfectly	38.4
Vertex Z position cut	31.5
Events with > 1 Lambda candidates that passed track cuts	0.4

Tracks and Λ candidate selection cuts

	V0's, mln
V0 vertices	443.0
Two track good status	147.9
VTPC clusters >15	124.8
$\Delta z \mathrm{cut}$	20.2
impact parameter cut	12.2
topology $(\cos \phi)$ cut	5.5
proton dE/dx cut	2.4
pion dE/dx cut	2.2

Event (collision) selection cuts

	Events, mln
Events	462.3
Primary Vertex exists	44.1
Vertex Fitted perfectly	201.9
Vertex Z position cut	182.8
T2 (S4 $!=0$) cut	156.5

Tracks and Λ candidate selection cuts

V0's, mln

Event (collision) selection cuts

	Events, mln
Events	119.288
Primary Vertex exists	113.0
Vertex Fitted perfectly	109.73
Vertex Z position cut	103.02
S4 (T2) inelastic cut	90.37
Events with > 1 Lambda candidates	
that passed track cuts	

Tracks and Λ candidate selection cuts

	V0's, mln
Two track good status	1045
$p_{\Lambda} < 160 \text{ GeV}$	1045

Different acceptance for different $\cos \theta_x$ protons

proton clusters ZX cuts1 x_e \in (0.2,0.5), p_ \in (0.4,0.8), cos $\theta_{v} \in$ (0.9,1.0)

proton clusters ZX cuts1 x_F \in (0.2,0.5), p_T \in (0.4,0.8), cos $\theta_{x} \in$ (0.0,0.1)

200

0

-400

-200

300

Different acceptance for different $\cos \theta_x$: pions

pion clusters ZX cuts1 x_ \in (0.2,0.5), p_ \in (0.4,0.8), cos $\theta_{v} \in$ (0.0,0.1)

pion clusters ZX cuts1 x_∈(0.2,0.5), p_∈(0.4,0.8), cosθ ∈(0.9,1.0)

Different acceptance for different $\cos \theta_y$ protons

Yehor Bondar

Different acceptance for different $\cos \theta_y$: pions

pion clusters ZX cuts1 x_E \in (0.2,0.5), p_T \in (0.4,0.8), cos $\theta_v \in$ (0.0,0.1)

pion clusters ZX cuts1 x_E \in (0.2,0.5), p_T \in (0.4,0.8), cos $\theta_v \in$ (0.9,1.0)

Why someone use $c_{MC} = N_{\text{gen}}/N_{\text{sel}}$ uncertainty $\sigma^2(c_{MC})/(c_{MC})^2 = 1/N_{\text{sel}} - 1/N_{\text{gen}}$? If N_{gen} obeys Poissonian distr, and N_{sel} obeys Binomial distr:

$$\sigma^2(N_{\rm gen}) = N_{\rm gen}, \sigma^2(N_{\rm sel}) = \sigma(N_{\rm gen}N_{\rm sel}) = N_{\rm sel}$$

$$\frac{\sigma(c_{MC})^2}{c_{MC}^2} = \frac{\sigma^2(N_{\text{gen}})}{N_{\text{gen}}^2} + \frac{\sigma^2(N_{\text{gen}})}{N_{\text{gen}}^2} - 2\frac{\sigma(N_{\text{gen}}N_{\text{sel}})}{N_{\text{gen}}N_{\text{sel}}} = \frac{1}{\frac{1}{N_{\text{gen}}} + \frac{1}{N_{\text{sel}}} - 2\frac{N_{\text{sel}}}{N_{\text{gen}}N_{\text{sel}}} = \frac{1}{N_{\text{sel}}} - \frac{1}{N_{\text{gen}}} = \frac{N_{\text{gen}} - N_{\text{sel}}}{N_{\text{gen}}N_{\text{sel}}}.$$

I implemented assumption "all 3 independent" - overestimation.

T2,WFA,BPD

```
const double_t wfaTime1[3] = { -100., 300., -200.}; //2009, 2010, 2011
const double_t wfaTime2[3] = \{0., 400., -100.\}; // two main wfa values
const double_t wfaTimeCut = 1500;
const evt::raw::Trigger& trigger = rawEvent.GetBeam().GetTrigger();
if (!trigger.IsTrigger(det::TriggerConst::eT2, det::TriggerConst::ePrescaled)) con
eventCuts \rightarrow Fill("T2", 1.);
if (!isMC) { // WFA S1_1 cut
  const vector<Double_t>& WFA_beam_time = trigger.GetTimeStructure(det::TimeStructure)
  unsigned int WFA_n_beam = trigger.GetNumberOfSignalHits(det::TimeStructureConst
  bool beamExist = false;
  if (WFA_n_beam != WFA_beam_time.size()) eventCuts->Fill("WFA_n_beam · != · WFA_beam
  for (unsigned int i = 0; i < WFA\_beam\_time.size(); ++i)
    if (!beamExist && (WFA_beam_time.at(i) == wfaTime1[wfaTimeIndex] || WFA_beam_
      beamExist = true;
    else if (fabs(WFA_beam_time.at(i) - (wfaTime1[wfaTimeIndex] + wfaTime2[wfaTim
      beamExist = false;
      break:
```

Vertex, Beamcut

```
if (!recEvent.HasPrimaryVertex(rec::VertexConst::ePrimaryFitZ)) continue;
eventCuts->Fill("primaryVertex", 1.);
const rec:: Vertex& vertexFIT = recEvent.GetPrimaryVertex(rec::VertexConst::eP)
if (vertexFIT.GetFitQuality() != rec::FitQuality::ePerfect) continue;
eventCuts->Fill("VertexFit", 1.);
if (!recEvent.HasMainVertex()) continue;
eventCuts->Fill("MainVertex", 1.);
const Point& vertexpoint = vertexFIT.GetPosition();
const double ZVertex = vertexpoint.GetZ();
if (ZVertex > maxZVertex || ZVertex < minZVertex) continue;
eventCuts->Fill("ZPosition", 1.);
int testTrack = 0, chargeOfTheLast;
double momentumOfTheLast;
for (auto trackIter = vertexFIT.DaughterTracksBegin(),
     trackEnd = vertexFIT.DaughterTracksEnd(); trackIter != trackEnd; ++trackEnd;
  const auto& vmain = recEvent.Get(*trackIter);
  if (vmain.HasTrack()) {
    const auto& tmain = recEvent.Get(vmain.GetTrackIndex());
    if (\text{tmain.GetCharge}) = 0 \&\&
```

VTPC Clusters and dEdx

pClusters1 = pos.GetNumberOfClusters(eVTPC1); pClusters2 = pos.GetNumberOfClusters(eVTPC2); nClusters1 = neg.GetNumberOfClusters(eVTPC1); nClusters2 = neg.GetNumberOfClusters(eVTPC2); if ((pClusters1 < 10) && (pClusters2 < 10)) continue; if ((nClusters1 < 10) && (nClusters2 < 10)) continue; rectrackCuts->Fill("VTPC10", 1.); inline double dEdxsigma(double p_gammabeta, unsigned points, const bool vtpc = tru if (points <= 5) return 0; const double sigma0 = vtpc ? 0.425 : 0.375;

return sigma0 / sqrt(double(points)) * pow(bethe(p_gammabeta), 0.625);

pDedx = pos.GetEnergyDeposit(eAll);

nDedx = neg.GetEnergyDeposit(eAll);

pSigmaDedx = dEdxsigma(p_pos.GetMag() / protonMass, pos.GetNumberOfdEdXC pos.GetNumberOfdEdXClusters(eVTPC1) + pos.GetNumber

nSigmaDedx = dEdxsigma(p_neg.GetMag() / pionMass, neg.GetNumberOfdEdXC neg.GetNumberOfdEdXClusters(eVTPC1) + neg.GetNumber

pSigmaDedxNative = pos.GetEnergyDepositVariance(rec::TrackConst::eAll);

Matching to tracks

int pidN = 0, pidP = 0, nCommonPointsN = 0; const sim :: VertexTrack * simVtxTrackMatchedN = nullptr, * simVtxTrackMatchedP = nullptr = nu//Check negative track **for** (**auto** simVtxTrackIter = neg.SimVertexTracksBegin(); simVtxTrackIter != neg.SimVertexTrackSEnd(): ++simVtxTrackIter) { **const** sim::VertexTrack& simVtxTrack = simEvent.Get(*simVtxTrackIter); **if** (simVtxTrack.GetRecTrackWithMaxCommonPoints() == neg.GetIndex()) { **auto** number_of_shared_points = simVtxTrack.GetNumberOfCommonPoints(neg.GetInde if (number_of_shared_points > nCommonPointsN) { nCommonPointsN = number_of_shared_points; simVtxTrackMatchedN = &simVtxTrack;pidN = simVtxTrack.GetParticleId();

Matching to Lambda vertex

match = 0;

- if (simVtxTrackMatchedN != nullptr && simVtxTrackMatchedP != nullptr) { match += 1
- if (match & 1) if (simVtxTrackMatchedN->HasStartVertex() && (pidN == ParticleConst
- if (match & 1) if (simVtxTrackMatchedP->HasStartVertex() && (pidP == ParticleConst
- if (match == 7) if (simVtxTrackMatchedN->GetStartVertexIndex() == simVtxTrackMatch
- if (match == 15) {

if (matchVtx1.GetNumberOfParentTracks() == 1) {
 match += 16;

 $const \ sim:: VertexTrack\& \ lambdaTrack = \ simEvent.Get(matchVtx1.GetFirstParentTrack) = const \ s$

- if (lambdaTrack.GetParticleId() == 3122) {
 match += 32;
 roctrackCuts >Fill("nIdentifiedLambdaVertex" 1);
 - rectrackCuts->Fill("nIdentifiedLambdaVertex", 1.);

const Vector& protonMomentum = simVtxTrackMatchedP->GetMomentum(),

pionMomentum = simVtxTrackMatchedN->GetMomentum();

//pSim[6] pSim[0] = protonMomentum.GetX(); pSim[1] = protonMomentum.GetY(); pSim[2] = pSim[3] = pionMomentum.GetX(); pSim[4] = pionMomentum.GetY(); pSim[5] = pion //const auto& simvertexpoint = simEvent.GetMainVertex().GetPosition();

xf pt bin	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
$x_F \in (-0.5, -0.3), p_T \in (0.8, 1.2)$	-0.175 ± 0.053	-0.170 ± 0.047	-0.158 ± 0.038	-0.059 ± 0.044
$x_F \in (-0.3, -0.2), p_T \in (0.8, 1.2)$	-0.070 ± 0.039	-0.268 ± 0.039	-0.030 ± 0.030	-0.184 ± 0.043
$x_F \in (-0.2, -0.1), p_T \in (0.8, 1.2)$	-0.057 ± 0.027	-0.087 ± 0.028	-0.015 ± 0.023	-0.108 ± 0.026
$x_F \in (-0.1, -0.05), p_T \in (0.8, 1.2)$	-0.083 ± 0.037	0.026 ± 0.040	-0.045 ± 0.030	0.029 ± 0.031
$x_F \in (-0.05, 0), p_T \in (0.8, 1.2)$	-0.053 ± 0.055	0.147 ± 0.039	0.009 ± 0.041	-0.009 ± 0.037
$x_F \in (0, 0.05), p_T \in (0.8, 1.2)$	-0.176 ± 0.049	0.182 ± 0.047	-0.321 ± 0.058	-0.006 ± 0.042

	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
point removal in phi,	-0.070 ± 0.039	-0.268 ± 0.039	-0.030 ± 0.030	-0.184 ± 0.043
point removal in cos				
theta				
point removal in phi,	-0.051 ± 0.038	-0.187 ± 0.034	-0.045 ± 0.030	-0.189 ± 0.030
no point removal in cos				
theta:				
no point removal in	-0.054 ± 0.035	-0.324 ± 0.041	-0.137 ± 0.035	-0.202 ± 0.028
phi, point removal in				
cos theta:				
no point removal in	-0.081 ± 0.035	-0.202 ± 0.032	-0.077 ± 0.029	-0.199 ± 0.027
phi, no point removal				
in cos theta:				

	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
point removal in phi,	-0.057 ± 0.027	-0.087 ± 0.028	-0.015 ± 0.023	-0.108 ± 0.026
point removal in cos				
theta				
point removal in phi,	-0.056 ± 0.028	-0.087 ± 0.028	-0.017 ± 0.023	-0.134 ± 0.024
no point removal in cos				
theta:				
no point removal in	-0.058 ± 0.027	-0.118 ± 0.028	0.009 ± 0.022	-0.151 ± 0.023
phi, point removal in				
cos theta:				
no point removal in	-0.057 ± 0.027	-0.126 ± 0.027	0.008 ± 0.023	-0.151 ± 0.023
phi, no point removal				
in cos theta:				

	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
point removal in	-0.083 ± 0.037	0.026 ± 0.040	-0.045 ± 0.030	0.029 ± 0.031
phi, point removal				
in cos theta				
point removal in	-0.087 ± 0.038	0.057 ± 0.038	-0.056 ± 0.030	0.029 ± 0.031
phi, no point re-				
moval in cos theta:				
no point removal	-0.082 ± 0.035	0.048 ± 0.036	-0.010 ± 0.035	0.043 ± 0.033
in phi, point re-				
moval in cos theta:				
no point removal	-0.096 ± 0.037	0.045 ± 0.037	-0.075 ± 0.030	0.004 ± 0.031
in phi, no point re-				
moval in cos theta:				

	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
point removal in	-0.053 ± 0.055	0.147 ± 0.039	0.009 ± 0.041	-0.009 ± 0.037
phi, point removal				
in cos theta				
point removal in	-0.044 ± 0.038	0.158 ± 0.038	-0.059 ± 0.033	0.027 ± 0.034
phi, no point re-				
moval in cos theta:				
no point removal	-0.162 ± 0.046	0.149 ± 0.038	-0.157 ± 0.038	0.064 ± 0.033
in phi, point re-				
moval in cos theta:				
no point removal	-0.060 ± 0.039	0.149 ± 0.038	-0.055 ± 0.032	0.064 ± 0.033
in phi, no point re-				
moval in cos theta:				

	EPOS P_x	EPOS P_y	FTFP P_x	FTFP P_y
point removal in	-0.176 ± 0.049	0.182 ± 0.047	-0.321 ± 0.058	-0.006 ± 0.042
phi, point removal				
in cos theta				
point removal in	-0.120 ± 0.045	0.143 ± 0.045	-0.103 ± 0.037	0.013 ± 0.039
phi, no point re-				
moval in cos theta:				
no point removal	-0.153 ± 0.048	0.132 ± 0.044	-0.268 ± 0.054	0.131 ± 0.044
in phi, point re-				
moval in cos theta:				
no point removal	-0.104 ± 0.044	0.132 ± 0.044	-0.094 ± 0.036	0.069 ± 0.037
in phi, no point re-				
moval in cos theta:				