Lambda transverse polarization in $\mathrm{p}+\mathrm{p} @ 158 \mathrm{GeV} / \mathrm{c}$ beam momentum at NA61/SHINE

Yehor Bondar

Jan Kochanowski University of Kielce

June 21, 2024

Outline

(1) Introduction

Inv mass fit, MC corrections
Unfolding
dEdx cut
K0S cut
(5) K0S cut
(6) Delta Z cut
(7) VTPC clusters cut
(8) q value, Γ_{L}, Γ_{R} from fit
(9) Weighting

Λ hyperon particle

- Discovered in 1950
- $\Lambda=u d s$
- $J^{P}=\frac{1}{2}^{+}$
- Mass: $m=1.116 \mathrm{GeV} / \mathrm{c}$
- Lifetime: $\tau=2.6 \cdot 10^{-10} \mathrm{~s}$, $c \tau=7.89 \mathrm{~cm}$.
- Main decay mode: $p \pi^{-}(\mathrm{BR}=63.9 \%)$

In the weak decay $\Lambda \rightarrow p+\pi^{-}$, daughter proton distribution function has the following form:

$$
\frac{d N}{d \Omega}=\frac{1}{4 \pi}\left(1+\alpha \cos \theta^{*}\right)
$$

where θ^{*} is the angle between daughter proton momentum and Λ spin vector in hyperon rest frame, and $\alpha=0.732 \pm 0.014$.

Transverse polarization definition and calculation

Transverse polarization definition:

1. Rotate from Lab frame to production plane coordinate system:

$$
\hat{n}_{x}=\frac{\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda}}{\left|\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda}\right|}, \quad \hat{n}_{z}=\frac{\vec{p}_{\Lambda}}{\left|\vec{p}_{\Lambda}\right|}, \hat{n}_{y}=\hat{n}_{z} \times \hat{n}_{x}
$$

2. Boost along \hat{n}_{z} to Λ rest frame.
3. Calculate cosine of angles between proton momentum \vec{p}_{p} and axes: $\cos \theta_{i}=p_{p i} /\left|\vec{p}_{p}\right|, i=x, y, z$ 4. Fit distribution of the $\cos \theta_{i}$ to the theoretical prediction and extract P_{i} - projection of polarization.

$$
f\left(\cos \theta_{i}\right)=\frac{1+\alpha P_{i} \cos \theta_{i}}{2}
$$

where $\alpha=0.732 \pm 0.014$.

A

ccording to parity conservation in the strong interaction, $P_{y} \equiv P_{z} \equiv 0$ if the incident proton beam is unpolarized. Thus the measurements of P_{y} and P_{z} are usually used for checking the systematic uncertanties.

Wanted result:

Wanted result: $\cos \theta_{x, y, z}$ distributions of the proton momentum in $\left(p_{\mathrm{T}}, y\right)$ bins in the rest frame of Λ produced in a primary vertex of inelastic proton-proton collisions at beam momentum $158 \mathrm{GeV} / \mathrm{c}$ $\left(\sqrt{s_{N N}}=17.3 \mathrm{GeV}\right)$ by strong and electromagnetic interaction processes.

Measured result: Distributions of Λ candidates 1 in $\left(p_{\mathrm{T}}, y, \cos \theta_{x, y}\right)$ bins in selected ${ }^{2}$ proton-proton events at beam momentum $158 \mathrm{GeV} / \mathrm{c}\left(\sqrt{s_{N N}}=17.3 \mathrm{GeV}\right)$.

[^0]
p-p (2009-2011) data analysis

Event (collision) selection cuts

- T2 trigger
- BPD
- no off-time beam particle in $\pm 1.5 \mu \mathrm{~s}$ window (WFA S1_1)

Tracks selection cuts

- One track is negatively charged, second - positive
- Min 10 clusters in at least one of VTPC1 and VTPC2 for both tracks
- Energy loss cut: $d E / d x$ within 3σ around Bethe-Bloch. In MC, proton and pion track matching
- Main vertex exists
- Vertex fit is perfect
- Interaction VtxZ within the target or less than 10 cm .

Bullet • corresponds to cuts that cannot be transformed directly in MC

$m_{\text {inv }}$ distributions fitting procedure

Signal as asymmetric q-Gaussian
(Breit-Wigner if $q=2$):
$\mathrm{x}_{\mathrm{F}} \in(0.1,0.2), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$ matched
$S(m)=N\left[1+(q-1) \frac{\left(m-m_{\Lambda}\right)^{2}}{0.25 \Gamma^{2}}\right]^{-}$

Unbinned extended log-likelihood fit with signal and background PDF with parameters $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}, p_{1}, p_{2}, N_{\text {sig }}, N_{\mathrm{bkg}}$, fixed q value is from the fit of matched $\Lambda m_{\text {inv }}$ distr.
For data, the q value is taken as weighted from EPOS and FTFP. Problem: sometimes bad description at $m_{\mathrm{inv}} \approx 1.09,1.14 \mathrm{GeV}$. Background part is fitted with 2nd order polynomial, fit is in region
$1.085 \mathrm{GeV} / c^{2} \leq m \leq 1.24 \mathrm{GeV} / c^{2}$.

$$
x_{F} \in(0.1,0.2), p_{T} \in(0.8,1.2) \text { sig+bkg }
$$

MC correction on MC data: closure test

Use first half of the MC data to calculate N_{i}^{MCsim}, and second half is to be corrected. Divide 4 D space $\left(x_{F}, p_{T}, \cos \theta_{j}, \phi\right), j=x, y$ to bins.
Based on invariant mass $m_{\text {inv }}$ distribution in particular $\left(x_{F}, p_{T}, \cos \theta_{j}, \phi\right), j=x, y$ bin, and calculate amount of Λ 's in this bin as $N_{i}^{\text {sel }}$.

$$
\begin{equation*}
N_{i}^{\text {corrected }}=N_{i}^{\mathrm{sel}} \times \frac{N_{i}^{\mathrm{MCsim}}}{N_{i}^{\mathrm{MCsel}}} \tag{1}
\end{equation*}
$$

Uncertainty of the yields is $\Delta N=\sqrt{N}$ and $\Delta N_{i}^{\text {sel }}$ is from fit, hence

$$
\frac{\Delta N_{i}^{\text {corrected }}}{N_{i}^{\text {corrected }}}=\sqrt{\left(\frac{\Delta N_{i}^{\text {sel }}}{N_{i}^{\text {sel }}}\right)^{2}+\left(\frac{\Delta N_{i}^{\text {sel }}}{N_{i}^{\text {sel }}}\right)^{2}+\left(\frac{\sqrt{N_{i}^{\mathrm{MCsim}}}}{N_{i}^{\mathrm{MCsim}}}\right)^{2}}
$$

N_{i} - number of entries at bin i of $\left(p_{T}, y, \cos \theta_{i}\right)$,
$N_{i}^{\text {corrected }}$ \qquad - corrected number of Λ,
$N_{i}^{\text {sel }}$ — number of Λ candidates fitted in $m_{\text {inv }}$ distributions,
N_{i}^{MCsim} — number of Λ hyperons produced in the simulated primary interactions.

$$
x_{F}:-0.5,-0.3,-0.2,-0.1,-0.05,0,0.05,0.1,0.2,0.3,0.5
$$

$$
p_{T}(\mathrm{GeV} / c): 0,0.2,0.4,0.8,1.2
$$

$$
\cos \theta_{x, y}: 10 \text { bins in }[-1,1]
$$

$\phi \in[-\pi, \pi]$ is defined as polar angle in (z, y) and (x, z) plane, 5 bins

ϕ binning in (z, y) plane for $\cos \theta_{x}$

ϕ binning in (x, z) plane for $\cos \theta_{y}$

We expect independence of spectra on ϕ, but different acceptance leads to different yields in these ϕ bins. Ways to fit $(\cos \theta, \phi)$ yields:

- Fit all 50 points to $f(\cos \theta, \phi)=(1+0.732 P \cos \theta) / 2$,
- Find average across 5ϕ bins, reject max 1 point if χ^{2} contribution >3, then in $\cos \theta$ distr, reject max 2 point if χ^{2} contribution >3.
For EPOS and FTFP, we expect $P_{x} \equiv P_{y} \equiv 0$.
Let's try these methods for closure test on two halves of EPOS (EPOS1,EPOS2), EPOS/FTFP and vice versa.

Epos1/Epos2 correction - all points - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

epos2 corr by epos1 $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Epos1/Epos2 correction - point removal $-x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Epos1/Epos2 and v.v. correction - point removal - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

FTFP1/FTFP2 correction - all points $-x_{F} \in(-0.1,-0.05), p_{T} \in(0.2,0.4)$

fttp1 corr by fttp2 $\mathrm{x}_{\mathrm{F}} \in(-0.1,-0.05), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

FTFP1/FTFP2 correction - point removal - $x_{F} \in(-0.1,-0.05), p_{T} \in(0.2,0.4)$

FTFP1/FTFP2 and vice versa correction - point removal -

 $x_{F} \in(-0.1,-0.05), p_{T} \in(0.2,0.4)$fffp2 corr by ftfp1 $\mathrm{x}_{\mathrm{F}} \mathrm{E}(-0.1,-0.05), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

fftp2 corr by ftfp1 $\mathrm{x}_{\mathrm{F}} \in(-0.1,-0.05), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

ftfp1 corr by fffp2 $\mathrm{x}_{\mathrm{F}} \in(-0.1,-0.05), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

ftfp1 corr by fffp2 $\mathrm{x}_{\mathrm{F}} \in(-0.1,-0.05), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

EPOS/FTFP correction - all points $-x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

epos corr by ftfp $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

EPOS/FTFP correction - point removal - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

epos corr by ftfp $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

EPOS/FTFP and v.v. correction - point removal - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

- EPOS-EPOS and FTFP-FTFP corrections: all-points and with-removal methods compatible with 0 ,
- EPOS-FTFP and vice versa corrections: introduces bias up to several \% that may be treated (?) as systematic uncertainty
- In result, effect is expected around 10% with syst. and stat. uncertainties of several \%

Problem: As measured distribution m_{i} is disturbed truth distribution t by some response matrix R by $m_{i}=\sum_{j} R_{i j} t_{j}$, the problem is to find an estimator for t, \hat{t} from known m and R.
In my case, $R_{i j}$ is probability Λ reconstructed in bin i given generated in bin j, and was constructed using matched Λ.

1. Simple matrix inversion: $\hat{t}=R^{-1} m$.

Drawback: high variance
2. Bayesian Unfolding: init guess $\hat{t}_{i}^{(0)}$ is uniform, then update using Bayes' theorem:

$$
\hat{t}_{i}^{(\text {new })}=\frac{1}{\sum_{j=1}^{N} R_{j i}} \sum_{j=1}^{N}\left(\frac{R_{j i} t_{i}}{\sum_{k=1}^{N} R_{j k} t_{k}}\right) m_{j}
$$

Regularization parameter is no. of iterations: 3 iterations was used (the fourth iteration introduced change of $\left.\chi^{2}<1\right)$. Drawback: Not actually Bayesian.

Sim-Rec migration $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Unfolding by inversion: FTFP

epos unfolded (RooUnfoldInvert) by ftfp, $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

Unfolding by Bayes: FTFP

epos unfolded (RooUnfoldBayes4) by ftfp, $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Unfolding by inversion: FTFP

epos unfolded (RooUnfoldInvert) by fttp, $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

Unfolding by Bayes: FTFP

epos unfolded (RooUnfoldBayes4) by ftfp, $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Unfolding by Bayes: FTFP

epos unfolded (RooUnfoldBayes4) by ftfp, $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

epos unfolded (RooUnfoldBayes4) by ftfp, $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Unfolding by inversion: FTFP

epos unfolded (RooUnfoldlnvert) by ftfp, $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

epos unfolded (RooUnfoldlinvert) by ftfp, $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

MC Correction: Summary

In bin $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$:

Method	$P_{x}(\%)$	$P_{y}(\%)$	
Unfold Bayes	4.3 ± 0.8	1.4 ± 0.4	
Unfold Invert	2.8 ± 0.8	-1.0 ± 0.7	
Bin-by-bin all points	3.4 ± 1.0	-1.4 ± 1.0	
Bin-by-bin point removal	3.5 ± 1.0	-0.3 ± 1.1	

$d E / d x$ cut analogy in MC

recorded data with $d E / d x$ cut

MC data that only matching to p and π^{+}tracks

MC data without matching

MC data that matching Λ vertex

Impact parameter cut
The cut is an ellipse with semi-axes along x 2 cm and along y 1 cm . Pretty y-pT independent picture.

The inv mass of $\Lambda, \mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4) \operatorname{GeV} / \mathrm{c}, \cos \theta_{x} \in(0.0,0.2) \varnothing$ bin 3

Invariant mass of A vs K $\mathrm{K}_{\mathrm{s}}^{0} \mathrm{x}_{\mathrm{E}} \in(-0.05,0), \mathrm{P}_{\mathrm{E}} \in(0.2,0.4)$ GeVic, $\cos \theta \in(0.0,0.2) \phi$ bin 3

fraction of of both Lambda and K0S candidates per all Lambda candidates:

$$
\frac{\#\left(\left|m_{\pi^{+} \pi^{-}}-m_{K 0 S}\right|<0.02\right) \cup \#\left(\left|m_{p \pi^{-}}-m_{\Lambda}\right|<0.02\right)}{\# \text { entries in Lambda hist }}
$$

$\cos \theta_{x, y}$

- $m_{\mathrm{inv}}\left(K_{0}^{S}, \Lambda\right)$ for MC (proton-pion matching) is useless, for data ($d E / d x$ cut) shows both candidates
- Idea is to somehow count no. of K_{0}^{S} that mimic in Lambda and subtract it

Epos, With/without Delta z cut

FRITIOF, With/without Delta z cut

Data, With/without Delta z cut

The inv mass of Λ (raw data), $y \in(0.25,0.75), p_{T} \in(0.4,0.8), \cos \theta_{x} \in(0.0,0.1)$

The inv mass of Λ (raw data), $\mathrm{y} \in(0.25,0.75), \mathrm{p}_{\mathrm{T}} \in(0.4,0.8), \cos \theta_{\mathrm{x}} \in(0.0,0.1)$

Data, With/without dEdx cut

The inv mass of Λ (raw data), $y \in(0.25,0.75), p_{T} \in(0.4,0.8), \cos \theta_{x} \in(0.0,0.1)$

Data, With/without Delta z cut (+dEdxcut)

Epos, With/without Delta z cut

$\Delta z>10 \mathrm{~cm}, y \in(0,0.25)$

$\Delta z>15 \mathrm{~cm}, y \in(0.25,0.75)$

$\Delta z>40 \mathrm{~cm}, y \in(0.75,1.25)$

$y \in(0.75,1.25), p_{T} \in(0.4,0.8)$

$y \in(1.25,2), p_{T} \in(0.4,0.8)$

$\Delta z>10 \mathrm{~cm}, y \in(0,0.25)$

$\Delta z>15 \mathrm{~cm}, y \in(0.25,0.75)$

$\Delta z>60 \mathrm{~cm}, y \in(1.25,2)$

$\mathrm{y} \in(1.25,2), \mathrm{P}_{\mathrm{T}} \in(0.4,0.8)$

VTPC1+VTPC2 great or equal 15

Relative bias $y \in(0.75,1.25), p_{T} \in(0.8,1.2)$

Relative stat $\mathrm{y} \in(0.75,1.25), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

VTPC1+VTPC2 great or equal 20

Relative bias $y \in(0.75,1.25), p_{T} \in(0.8,1.2)$

Relative stat $\mathrm{y} \in(0.75,1.25), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

VTPC1+VTPC2 great or equal 20

But, the signal is integral of asymm BreitWigner PDF

Relative bias $y \in(0.75,1.25), p_{T} \in(0.8,1.2)$

Relative stat $\mathrm{y} \in(0.75,1.25), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

VTPC1+VTPC2 great or equal 20

But, the signal is integral of asymm BreitWigner PDF. The farther from midrapidity the worse...

Relative stat $\mathrm{y} \in(0.25,0.75), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

VTPC1+VTPC2 great or equal 20

But, the signal is integral of asymm BreitWigner PDF. The farther from midrapidity the worse...

Relative stat $y \in(0,0.25), p_{T} \in(0.8,1.2)$

VTPC1+VTPC2 Clusters in $y \in(0.75,1.25), p_{T} \in(0.8,1.2)$ in data
with $d E / d x$ cut

with $d E / d x$ cut and $\Delta z>40 \mathrm{~cm}$

$\operatorname{Max}(V T P C 1, V T P C 2) \geq 10$

Relative bias $y \in(0.75,1.25), p_{T} \in(0.8,1.2)$

Relative stat $\mathrm{y} \in(0.75,1.25), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

Γ_{L} on invmass hists

Γ_{L} on invmass hists $y \in(0.25,0.75), p_{T} \in(0.8,1.2):$

Epos

q value

q value on invmass hists $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$:

q value

q value on invmass hists $x_{F} \in(-0.3,-0.2), p_{T} \in(0.4,0.8)$:
$x_{F} \in(-0.3,-0.2), p_{T} \in(0.4,0.8)$

q value

q value on invmass hists $x_{F} \in(-0.3,-0.2), p_{T} \in(0.8,1.2)$:
$\mathrm{x}_{\mathrm{F}} \in(-0.3,-0.2), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

$\Gamma_{L, R}$ on invmass hists

q value on invmass hists $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$:
$\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

$\Gamma_{L, R}$ on invmass hists

q value on invmass hists $x_{F} \in(-0.3,-0.2), p_{T} \in(0.4,0.8)$:
$\mathrm{x}_{\mathrm{F}} \in(-0.3,-0.2), \mathrm{p}_{\mathrm{T}} \in(0.4,0.8)$

$\Gamma_{L, R}$ on invmass hists

q value on invmass hists $x_{F} \in(-0.3,-0.2), p_{T} \in(0.8,1.2)$:
$\mathrm{x}_{\mathrm{F}} \in(-0.3,-0.2), \mathrm{p}_{\mathrm{T}} \in(0.8,1.2)$

Weighted MC correction data

Without weighting for 4 -dim bin i, the multiplicative factor is:

$$
\begin{equation*}
c_{M C}=\frac{\int_{\mathrm{bin}}\left[\frac{d^{2} n}{d x_{F} d p_{T}}\right]^{\mathrm{MC}}}{\int_{\mathrm{bin}}\left[\frac{d^{2} n}{d x_{F} d p_{T}}\right]^{\mathrm{MC}} \epsilon\left(x_{F}, p_{T}, \cos \theta, \phi\right)}=\frac{\frac{1}{N_{\mathrm{evt}}} \sum_{g e n \in b i n} 1}{\frac{1}{N_{\mathrm{evt}}} \sum_{\text {sel } \in \text { bin }} 1}, \tag{2}
\end{equation*}
$$

(The fact that MC distribution is uniform in $(\cos \theta, \phi)$ was taken into account)
With weighting for bin i, we have to include $w=\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{MC}}$ term in both integrals/sums:

$$
\begin{equation*}
c_{M C}=\frac{\sum_{g e n} 1 \cdot\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{MC}}}{\sum_{\text {sel }} 1 \cdot w}=\frac{N_{\mathrm{evt}}^{\mathrm{DATA}}\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}}}{\sum_{\text {sel }} 1 \cdot w} \tag{3}
\end{equation*}
$$

So, the value $w=w\left(x_{F}, p_{T}\right)$ is a weight for each Λ candidate for $m_{\text {inv }}$ fitting calculated for specific $\left(x_{F}, p_{T}\right)$ of this Λ candidate, hence interpolation is needed.

Weighting issues

- linear interpolation for $\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{MC}}$ is possible using the distribution showm below (histogram).
- Data interpolation: linear across x_{F}, p_{T} spectra based on fitted inversed slope parameter T for fixed x_{F} bin. (at midrapidity, $x_{F} \in(-0.1,0)$ gives $T=143.2 \pm 2.7, x_{F} \in(0,0.1)$ gives $T=140.9 \pm 2.8$, $y \in(-0.25,0.25)$ gives $T=158.2 \pm 3.6$, A.Wilczek paper says $T=160.7)$

Weighted EPOS-FTFP and FTFP-EPOS correction

EPOS corrected by FTFP:

$$
\begin{equation*}
N_{i}^{\text {corrected }}=N_{i}^{\mathrm{EPOS} \text { sel }} \times \frac{N_{\mathrm{evt}}^{\mathrm{FTFP}}\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{EPOS}}}{\sum_{s e l \in b i n}^{\mathrm{FTFP}} 1 \cdot\left[\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{EPOS}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{FTFP}}\right]} \tag{4}
\end{equation*}
$$

FTFP corrected by EPOS:

$$
\begin{equation*}
N_{i}^{\text {corrected }}=N_{i}^{\mathrm{FTFP} \text { sel }} \times \frac{N_{\mathrm{evt}}^{\mathrm{EPOS}}\left(\frac{d^{2} n}{d x_{\mathrm{F}} d p_{T}}\right)^{\mathrm{FTFP}}}{\sum_{\text {sel } \text { bin }}^{\mathrm{EPOS}} 1 \cdot\left[\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{FTFP}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{EPOS}}\right]} \tag{5}
\end{equation*}
$$

Data corrected by FTFP:

$$
\begin{equation*}
N_{i}^{\text {corrected }}=N_{i}^{\text {DATA sel }} \times \frac{N_{\mathrm{evt}}^{\mathrm{FTFP}}\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}}}{\sum_{s e l \in b i n}^{\mathrm{FTFP}} 1 \cdot\left[\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{FTFP}}\right]} \tag{6}
\end{equation*}
$$

Data corrected by EPOS:

$$
\begin{equation*}
N_{i}^{\text {corrected }}=N_{i}^{\text {DATA sel }} \times \frac{N_{\mathrm{evt}}^{\mathrm{EPOS}}\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}}}{\sum_{\text {sel } \in \text { bin }}^{\mathrm{EPOS}} 1 \cdot\left[\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{DATA}} /\left(\frac{d^{2} n}{d x_{F} d p_{T}}\right)^{\mathrm{EPOS}}\right]} \tag{7}
\end{equation*}
$$

EPOS/FTFP weighted correction - all points - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$
epos corr by ftfpwmc $\mathrm{x}_{\mathrm{F}} \in(-0.05,0), \mathrm{p}_{\mathrm{T}} \in(0.2,0.4)$

EPOS/FTFP weighted correction - point removal - $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

epos corr by ftfpwmc $x_{F} \in(-0.05,0), p_{T} \in(0.2,0.4)$

Backup Slides

Model Feeddown EPOS

EPOS1.99 CRMC v1.4 generator, eGeneratorFinal Lambdas have the following parent:
Summary: No Ξ - probably because no weak decay in EPOS, Ξ s are eGeneratorFinal and decayed in Geant.

PID	particle	abundance
2212	p	0.4775
3212	Σ^{0}	0.1987
3224	Σ^{*+}	0.0768
3214	$\Sigma^{* 0}$	0.0541
3114	Σ^{*-}	0.0303
13224	$\Sigma^{+}(1670)$	0.0125
13222	$\Sigma^{+}(1660)$	0.0125
42212	$N^{+}(1710)$	0.0118
22124	$N^{+}(1700)$	0.0118
32124	$N^{+}(1720)$	0.0117
42112	$N^{0}(1710)$	0.0070
21214	$N^{0}(1700)$	0.0070
31214	$N^{0}(1720)$	0.0070
13216	$\Sigma(1915)^{0}$	0.0059
23214	$\Sigma(1940)^{0}$	0.0058
\vdots	\vdots	\vdots

Model Feeddown FTFP

In FTFP (Geant4 v10.7.0), no info about resonance source, only implemented since Shine v1r21p0 (Geant4 v10.7.0.shine.2).

- directly from proton
- from Σ^{0} (e.-m. decay), weak decays: Ξ, Ω, Ξ_{c}^{0}, etc.
- Double cascades: from $\Omega^{-} \rightarrow \Xi^{0}, \Xi^{-}, \Omega_{c}^{0} \rightarrow \Xi^{0}$

Direct parent:

PID	particle	abundance
2212	p	0.73517
3212	Σ^{0}	0.254763
3312	Ξ^{-}	0.00518028
3322	Ξ^{0}	0.0039818
4132	Ξ_{c}^{0}	0.000741412
3334	Ω^{-}	0.000163111

FTFP/EPOS Lambda production

Generator Λ production

FTFP/EPOS/DATA Lambda production

FTFP/EPOS/DATA Lambda production

FTFP/EPOS/DATA Lambda production

FTFP/EPOS/DATA Lambda production

$$
x_{F} \in(-0.1,0)
$$

FTFP/EPOS/DATA Lambda production

FTFP/EPOS/DATA Lambda production

FTFP/EPOS Lambda production + binning

Generator Λ production EPOS

Generator Λ production FTFP

Data set

The study was performed on the following data:
/eos/experiment/na61/data/prod/p_LH_158_09/026_14b_v0r8p0_pp_slc6_phys_PP/ /eos/experiment/na61/data/prod/p_LHT_158_10/047_17c_v1r17p1_pp_centos7_phys/ /eos/experiment/na61/data/prod/p_LHT_158_11/075_17c_v1r17p1_pp_centos7_phys/

FROTIOF MC Luminance production (200 mln events):
/eos/experiment/na61/data/Simulation/p_LHT_158_09_beam_mode_Luminance/v1r19p1/ /eos/experiment/na61/data/Simulation/p_LHT_158_10_beam_mode_Luminance/v1r19p1/

EPOS MC production (100 mln events):
/eos/experiment/na61/data/Simulation/p_LHT_158_09/v14b026_v0r8p0_pp_slc5_pp/SHOE /eos/experiment/na61/data/Simulation/p_LHT_158_10/v14e032_v1r6p0_pp_slc5_pp/SHOE

p-p 2009-2011 Data Statistics

Event (collision) selection cuts

	Events, mln
Events	56.0
T2 cut	52.0
WFA S11 cut	49.4
BPD cut	44.4
Primary Vertex exists	44.1
Vertex Fitted perfectly	38.4
Vertex Z position cut	31.5
Events with > 1 Lambda candidates that passed track cuts	0.4

Tracks and Λ candidate selection cuts

	V0's, mln
V0 vertices	443.0
Two track good status	147.9
VTPC clusters >15	124.8
Δz cut	20.2
impact parameter cut	12.2
topology $(\cos \phi)$ cut	5.5
proton $d E / d x$ cut	2.4
pion $d E / d x$ cut	2.2

FRITIOF Data Statistics

Event (collision) selection cuts

	Events, mln
Events	462.3
Primary Vertex exists	44.1
Vertex Fitted perfectly	201.9
Vertex Z position cut	182.8
T2 (S4!=0) cut	156.5

Tracks and Λ candidate selection cuts V0's, mln

EPOS Data Statistics

Event (collision) selection cuts

	Events, mln
Events	119.288
Primary Vertex exists	113.0
Vertex Fitted perfectly	109.73
Vertex Z position cut	90.37
S4 (T2) inelastic cut	
Events with >1 1 Lambda candidates that passed track cuts	

Different acceptance for different $\cos \theta_{x}$ protons

proton clusters $Z X$ cuts $1 x_{F} \in(0.2,0.5), p_{T} \in(0.4,0.8), \cos \theta_{x} \in(0.0,0.1)$

proton clusters $Z X$ cuts $1 x_{F} \in(0.2,0.5), p_{T} \in(0.4,0.8), \cos \theta_{x} \in(0.9,1.0)$

Different acceptance for different $\cos \theta_{x}$: pions

pion clusters $Z X$ cuts $1 X_{F} \in(0.2,0.5), p_{T} \in(0.4,0.8), \cos \theta_{x} \in(0.0 .0 .1)$

pion clusters $Z X$ cuts $1 X_{F} \in(0.2,0.5), p_{T} \in(0.4,0.8), \cos \theta_{\mathrm{x}} \in(0.9,1.0)$

Different acceptance for different $\cos \theta_{y}$ protons

proton clusters $Z X$ cuts $1 X_{F} \in(0.2,0.5), p_{T} \in(0.4,0.8), \cos \theta_{y} \in(0.9,1.0)$

Different acceptance for different $\cos \theta_{y}:$ pions

MC correction Uncertainty

Why someone use $c_{M C}=N_{\text {gen }} / N_{\text {sel }}$ uncertainty $\sigma^{2}\left(c_{M C}\right) /\left(c_{M C}\right)^{2}=1 / N_{\text {sel }}-1 / N_{\text {gen }}$? If $N_{\text {gen }}$ obeys Poissonian distr, and $N_{\text {sel }}$ obeys Binomial distr:

$$
\begin{gathered}
\sigma^{2}\left(N_{\mathrm{gen}}\right)=N_{\mathrm{gen}}, \sigma^{2}\left(N_{\mathrm{sel}}\right)=\sigma\left(N_{\mathrm{gen}} N_{\mathrm{sel}}\right)=N_{\mathrm{sel}} \\
\frac{\sigma\left(c_{M C}\right)^{2}}{c_{M C}^{2}}=\frac{\sigma^{2}\left(N_{\mathrm{gen}}\right)}{N_{\mathrm{gen}}^{2}}+\frac{\sigma^{2}\left(N_{\mathrm{gen}}\right)}{N_{\mathrm{gen}}^{2}}-2 \frac{\sigma\left(N_{\mathrm{gen}} N_{\mathrm{sel}}\right)}{N_{\mathrm{gen}} N_{\mathrm{sel}}}= \\
=\frac{1}{N_{\mathrm{gen}}}+\frac{1}{N_{\mathrm{sel}}}-2 \frac{N_{\mathrm{sel}}}{N_{\mathrm{gen}} N_{\mathrm{sel}}}=\frac{1}{N_{\mathrm{sel}}}-\frac{1}{N_{\mathrm{gen}}}=\frac{N_{\mathrm{gen}}-N_{\mathrm{sel}}}{N_{\mathrm{gen}} N_{\mathrm{sel}}} .
\end{gathered}
$$

I implemented assumption "all 3 independent" - overestimation.
const double_t wfaTime1[3] $=\{-100 ., 300 .,-200.\} ; / / 2009,2010,2011$
const double_t wfaTime2 $[3]=\{0 ., 400 .,-100.\} ; \quad / /$ two main wfa values
const double_t wfaTimeCut $=1500$;
const evt: :raw: Trigger\& trigger = rawEvent. GetBeam (). GetTrigger () ;
if (!trigger. IsTrigger (det:: TriggerConst::eT2, det::TriggerConst::ePrescaled)) col eventCuts \rightarrow Fill ("T2", 1.) ;
if (!isMC) \{ // WFA S1_1 cut
const vector $<$ Double_t $>\&$ WFA_beam_time $=$ trigger. GetTimeStructure (det: : TimeStruc unsigned int WFA_n_beam $=$ trigger. GetNumberOfSignalHits (det: TimeStructureConst bool beamExist $=$ false;
if (WFA_n_beam != WFA_beam_time.size()) eventCuts \rightarrow Fill ("WFA_n_beam-!=-WFA_bean for (unsigned int $\mathrm{i}=0 ; \mathrm{i}<$ WFA_beam_time.size (); + i)
\{
if (! beamExist \&\& (WFA_beam_time.at $(\mathrm{i})=$ wfaTime1[wfaTimeIndex] || WFA_beam beamExist $=$ true;
else if (fabs(WFA_beam_time.at (i) - (wfaTime1[wfaTimeIndex] + wfaTime2[wfaTim \{
beamExist $=$ false;
break;

Vertex, Beamcut

```
if (!recEvent.HasPrimaryVertex(rec::VertexConst::ePrimaryFitZ)) continue;
eventCuts -> Fill("primaryVertex", 1.);
const rec::Vertex& vertexFIT = recEvent.GetPrimaryVertex(rec ::VertexConst::eP
if (vertexFIT.GetFitQuality() != rec::FitQuality::ePerfect) continue;
eventCuts ->Fill("VertexFit", 1.);
if (!recEvent.HasMainVertex()) continue;
eventCuts }->\mathrm{ Fill("MainVertex", 1.);
const Point& vertexpoint = vertexFIT.GetPosition();
const double ZVertex = vertexpoint.GetZ();
if (ZVertex > maxZVertex || ZVertex < minZVertex) continue;
eventCuts ->Fill("ZPosition", 1.);
int testTrack = 0, chargeOfTheLast;
double momentumOfTheLast;
for (auto trackIter = vertexFIT.DaughterTracksBegin(),
trackEnd = vertexFIT.DaughterTracksEnd(); trackIter != trackEnd; ++track
const auto& vmain = recEvent.Get(*trackIter);
if (vmain.HasTrack()) {
const auto& tmain = recEvent.Get(vmain.GetTrackIndex ());
if (tmain.GetCharge() != 0 &&
```

```
pClusters1 = pos.GetNumberOfClusters(eVTPC1);
pClusters2 = pos.GetNumberOfClusters(eVTPC2);
nClusters1 = neg.GetNumberOfClusters(eVTPC1);
nClusters2 = neg.GetNumberOfClusters(eVTPC2);
if (( pClusters1<10) && (pClusters2<10)) continue;
if ((nClusters1<10) && (nClusters2 < 10)) continue;
rectrackCuts - F Fill("VTPC10", 1.);
```

inline double dEdxsigma(double p_gammabeta, unsigned points, const bool vtpc $=\operatorname{tr}$
if (points $<=5$) return 0 ;
const double sigma0 $=$ vtpc ? 0.425 : 0.375 ;
return $\operatorname{sigma} 0 / \operatorname{sqrt}($ double(points)) $*$ pow (bethe (p_gammabeta), 0.625);
\}
pDedx $=$ pos.GetEnergyDeposit (eAll);
nDedx $=$ neg. GetEnergyDeposit (eAll);
pSigmaDedx $=$ dEdxsigma(p_pos.GetMag () / protonMass, pos.GetNumberOfdEdXC
pos. GetNumberOfdEdXClusters (eVTPC1) + pos. GetNumbe
nSigmaDedx $=$ dEdxsigma (p_neg. GetMag () / pionMass, neg. GetNumberOfdEdXC
neg. GetNumberOfdEdXClusters(eVTPC1) + neg. GetNumbe
pSigmaDedxNative $=$ pos. GetEnergyDepositVariance (rec::TrackConst: : eAll);

Matching to tracks

```
int pidN = 0, pidP = 0, nCommonPointsN = 0;
const sim::VertexTrack *simVtxTrackMatchedN = nullptr, *simVtxTrackMatchedP = nul
//Check negative track
for (auto simVtxTrackIter = neg.SimVertexTracksBegin();
simVtxTrackIter != neg.SimVertexTracksEnd(); ++simVtxTrackIter) {
    const sim::VertexTrack& simVtxTrack = simEvent.Get(*simVtxTrackIter);
    if (simVtxTrack.GetRecTrackWithMaxCommonPoints() = neg.GetIndex()) {
        auto number_of_shared_points = simVtxTrack.GetNumberOfCommonPoints(neg.GetInde
        if ( number_of_shared_points > nCommonPointsN ) {
            nCommonPointsN = number_of_shared_points;
            simVtxTrackMatchedN = &simVtxTrack;
            pidN = simVtxTrack. GetParticleId ();
        }
    }
}
```


Matching to Lambda vertex

```
match = 0;
if (simVtxTrackMatchedN != nullptr && simVtxTrackMatchedP != nullptr) { match +=
if (match & 1) if (simVtxTrackMatchedN }->\mathrm{ HasStartVertex () && (pidN == ParticleConst
if (match & 1) if (simVtxTrackMatchedP }->\mathrm{ HasStartVertex () && (pidP == ParticleConst
if (match = 7) if (simVtxTrackMatchedN }->\mathrm{ GetStartVertexIndex () == simVtxTrackMatch
if (match = 15) {
    const sim::Vertex& matchVtx1 = simEvent.Get(simVtxTrackMatchedN }->\mathrm{ (GetStartVertexI
    if (matchVtx1.GetNumberOfParentTracks() = 1) {
        match += 16;
        const sim::VertexTrack& lambdaTrack = simEvent.Get(matchVtx1. GetFirstParentTra
        if (lambdaTrack.GetParticleId () = 3122) {
            match += 32;
            rectrackCuts - Fill("nIdentifiedLambdaVertex", 1.);
            const Vector& protonMomentum = simVtxTrackMatchedP }->\mathrm{ - GetMomentum(),
                                    pionMomentum = simVtxTrackMatchedN}->\mathrm{ -GetMomentum ();
            //pSim [6]
            pSim [0] = protonMomentum.GetX(); pSim [1] = protonMomentum.GetY(); pSim [2] =
            pSim[3] = pionMomentum.GetX(); pSim [4] = pionMomentum.GetY(); pSim[5] = pion
            //const auto\mathscr{G} simvertexpoint = simEvent.GetMainVertex().GetPosition();
```

xf pt bin	EPOS P_{x}	EPOS P_{y}	FTFP P_{x}	FTFP P_{y}
$x_{F} \in(-0.5,-0.3), p_{T} \in(0.8,1.2)$	-0.175 ± 0.053	-0.170 ± 0.047	-0.158 ± 0.038	-0.059 ± 0.044
$x_{F} \in(-0.3,-0.2), p_{T} \in(0.8,1.2)$	-0.070 ± 0.039	-0.268 ± 0.039	-0.030 ± 0.030	-0.184 ± 0.043
$x_{F} \in(-0.2,-0.1), p_{T} \in(0.8,1.2)$	-0.057 ± 0.027	-0.087 ± 0.028	-0.015 ± 0.023	-0.108 ± 0.026
$x_{F} \in(-0.1,-0.05), p_{T} \in(0.8,1.2)$	-0.083 ± 0.037	0.026 ± 0.040	-0.045 ± 0.030	0.029 ± 0.031
$x_{F} \in(-0.05,0), p_{T} \in(0.8,1.2)$	-0.053 ± 0.055	0.147 ± 0.039	0.009 ± 0.041	-0.009 ± 0.037
$x_{F} \in(0,0.05), p_{T} \in(0.8,1.2)$	-0.176 ± 0.049	0.182 ± 0.047	-0.321 ± 0.058	-0.006 ± 0.042

$x_{F} \in(-0.3,-0.2), p_{T} \in(0.8,1.2)$

	EPOS P_{x}	EPOS P_{y}	FTFP P_{x}	FTFP P_{y}
point removal in phi, point removal in cos theta	-0.070 ± 0.039	-0.268 ± 0.039	-0.030 ± 0.030	-0.184 ± 0.043
point removal in phi, no point removal in cos theta:	-0.051 ± 0.038	-0.187 ± 0.034	-0.045 ± 0.030	-0.189 ± 0.030
no point removal in phi, point removal in cos theta:	-0.054 ± 0.035	-0.324 ± 0.041	-0.137 ± 0.035	-0.202 ± 0.028
no point removal in phi, no point removal in cos theta:	-0.081 ± 0.035	-0.202 ± 0.032	-0.077 ± 0.029	-0.199 ± 0.027

$x_{F} \in(-0.2,-0.1), p_{T} \in(0.8,1.2)$

	EPOS P_{x}	EPOS P_{y}	FTFP P_{x}	FTFP P_{y}
point removal in phi, point removal in cos theta	-0.057 ± 0.027	-0.087 ± 0.028	-0.015 ± 0.023	-0.108 ± 0.026
point removal in phi, no point removal in cos theta:	-0.056 ± 0.028	-0.087 ± 0.028	-0.017 ± 0.023	-0.134 ± 0.024
no point removal in phi, point removal in cos theta:	-0.058 ± 0.027	-0.118 ± 0.028	0.009 ± 0.022	-0.151 ± 0.023
no point removal in phi, no point removal in cos theta:	-0.057 ± 0.027	-0.126 ± 0.027	0.008 ± 0.023	-0.151 ± 0.023

$x_{F} \in(-0.1,-0.05), p_{T} \in(0.8,1.2)$

	EPOS P_{x}	$\mathrm{EPOS} P_{y}$	$\mathrm{FTFP} P_{x}$	$\mathrm{FTFP} P_{y}$
point removal in phi, point removal in cos theta	-0.083 ± 0.037	0.026 ± 0.040	-0.045 ± 0.030	0.029 ± 0.031
point removal in phi, no point re- moval in cos theta:	-0.087 ± 0.038	0.057 ± 0.038	-0.056 ± 0.030	0.029 ± 0.031
no point removal in phi, point re- moval in cos theta:	-0.082 ± 0.035	0.048 ± 0.036	-0.010 ± 0.035	0.043 ± 0.033
no point removal in phi, no point re- moval in cos theta:	-0.096 ± 0.037	0.045 ± 0.037	-0.075 ± 0.030	0.004 ± 0.031

$x_{F} \in(-0.05,0),. p_{T} \in(0.8,1.2)$

	EPOS P_{x}	EPOS P_{y}	FTFP P_{x}	FTFP P_{y}
point removal in phi, point removal in cos theta	-0.053 ± 0.055	0.147 ± 0.039	0.009 ± 0.041	-0.009 ± 0.037
point removal in phi, no point re- moval in cos theta:	-0.044 ± 0.038	0.158 ± 0.038	-0.059 ± 0.033	0.027 ± 0.034
no point removal in phi, point re- moval in cos theta:	-0.162 ± 0.046	0.149 ± 0.038	-0.157 ± 0.038	0.064 ± 0.033
no point removal in phi, no point re- moval in cos theta:	-0.060 ± 0.039	0.149 ± 0.038	-0.055 ± 0.032	0.064 ± 0.033

$x_{F} \in(0 ., 0.05), p_{T} \in(0.8,1.2)$

	EPOS P_{x}	EPOS P_{y}	FTFP P_{x}	FTFP P_{y}
point removal in phi, point removal in cos theta	-0.176 ± 0.049	0.182 ± 0.047	-0.321 ± 0.058	-0.006 ± 0.042
point removal in phi, no point re-	-0.120 ± 0.045	0.143 ± 0.045	-0.103 ± 0.037	0.013 ± 0.039
moval in cos theta: no point removal in phi, point re- moval in cos theta: no point removal in phi, no point re- moval in cos theta:	-0.153 ± 0.048	0.132 ± 0.044	-0.268 ± 0.054	0.131 ± 0.044

[^0]: ${ }^{1}$ selected with track and vertex candidate cuts
 ${ }^{2}$ with respect to event cuts

