
https://root.cern

ROOT
Data Analysis Framework

ROOT Summer Student
Course

https://root.cern

Sharing the knowledge!

2

(For the benefit of everybody)

This course is recorded (slides and audio)

Trainer

3

Marta Czurylo

Physics PhD,
Fellow at ROOT team

My research:
ROOT RDataFrame R&D

Trainer

4

Jonas Hahnfeld
Computer Science PhD Student

My research:
RNTuple & Histogram R&D

Trainer

5

Danilo Piparo
ROOT Project Leader

My research:
High performance scientific
software and ergonomy of
interfaces

Setup!

Make sure you can login to SWAN: https://swan.cern.ch
● The Jupyter Notebook service of CERN
● IMPORTANT: first visit https://cernbox.cern.ch

6

https://swan.cern.ch
https://cernbox.cern.ch

Setup!

7

Use the SWAN
default settings

Setup!

● Go to the github repository
● Click on the SWAN badge

8

https://github.com/root-project/student-course

Introduction

9

10

A Quick Tour of ROOT

ROOT is an international
collaboration:
● Large effort contributed by

CERN
● And also FNAL, GSI,

Princeton

ROOT is its user community,
contributors and developers

ROOT is open source software:
contributions are welcome!

What can you do with ROOT?

11
Link to publication Link to publication

https://arxiv.org/pdf/1207.7235.pdf
https://arxiv.org/pdf/1406.3827.pdf

ROOT in a Nutshell

ROOT can be seen as a collection of building blocks for various activities, like:
▶ Data analysis: histograms, graphs, functions
▶ I/O: row-wise, column-wise storage of any C++ object
▶ Statistical tools (RooFit/RooStats): rich modeling and statistical inference
▶ Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
▶ C++ interpretation: full language compliance
▶ Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
▶ Advanced graphics (2D, 3D, event display)
▶ Declarative Analysis: RDataFrame
▶ And more: HTTP serving, JavaScript visualisation

12
An Open Source Project https://github.com/root-project/root

https://github.com/root-project/root

ROOT Application Domains

13

Event Filtering

Data RecoRaw
Analysis
Formats… Plots

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

LHC Data in ROOT Format

14

~2EB
(exa = 1018)

as of 2024

https://root.cern

▶ ROOT web site: the source of
information for ROOT users
● For beginners and experts
● Installation instructions
● Class documentation
● Manuals, presentations
● Forum

15

Resources

▶ ROOT Forum: https://root-forum.cern.ch

▶ ROOT Website: https://root.cern

▶ Further reading: https://root.cern/get_started

❖ (includes booklet for beginners: "The ROOT Primer")

▶ Documentation: https://root.cern/doc/master/

16

https://root-forum.cern.ch
https://root.cern
https://root.cern/get_started
https://root.cern/doc/master/
https://www.linkedin.com/groups/1826455
https://github.com/root-project
https://mattermost.web.cern.ch/root/channels/root-summer-students-course-2024

Scope of this Course

▶ We have 3 hours:
● Not enough to teach you a HEP analysis
● Instead, introduction to key elements physicists use from ROOT:

◻ Histogramming
◻ Fitting
◻ Reading data
◻ Data analysis

17

Course begins

We now move to the course material on Jupyter Notebooks

18

Wrap up

19

Summary

20

● Covered a number of topics today:

○ What is ROOT and how to use it?

○ How to draw histograms, functions and graphs

○ How to fit histograms

○ How to read and write files

○ What is RDataFrame and how to use it

Have a chat with ROOT!

This course was only the beginning - use the resources, ask us now, ask on

the forum!

Or ask us in-person in an informal setting!

Coffee with ROOT

26th June 9:30am-10:30am

R1 - big tables in front of Grab & Go bar

21

Resources

▶ ROOT Forum: https://root-forum.cern.ch

▶ ROOT Website: https://root.cern

▶ Further reading: https://root.cern/get_started

❖ (includes booklet for beginners: "The ROOT Primer")

▶ Documentation: https://root.cern/doc/master/

22

https://root-forum.cern.ch
https://root.cern
https://root.cern/get_started
https://root.cern/doc/master/
https://www.linkedin.com/groups/1826455
https://github.com/root-project
https://mattermost.web.cern.ch/root/channels/root-summer-students-course-2024

Post-workshop survey

● Thank you for attending the course today!

● At last - we would like to ask you to fill in a short
post-workshop survey on indico - your opinion matters
and we want to make the course even better in the
future

23

Extra material for self study

Foreword

● Most topics (but not all) were already covered in the main
part of the course

● Treat the following slides as a good summary of what
you’ve already learned plus some extra information

● Additionally, after every sub-module you are pointed to
some extra exercises (in the) where you will practice both
using notebooks (as during the course), but you will also
attempt writing and executing C++ ROOT macros

ENJOY!
25

The ROOT Prompt and Macros

26

The ROOT Prompt

▶ C++ is a compiled language
● A compiler is used to translate source code into machine instructions

▶ ROOT provides a C++ interpreter
● Interactive C++, without the need of a compiler, like Python, Ruby,

Haskell …
◼ Code is Just-in-Time compiled!

● Is started with the command:

● The interactive shell is also called "ROOT prompt" or "ROOT interactive
prompt"

27

root

ROOT As a Calculator

28

ROOT can be used as a simple calculator,
but we let’s make a step forward:
declare variables and use a for control
structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Controlling ROOT

▶ Special commands which are not C++ can be typed at the
prompt, they start with a "."

▶ For example:
● To quit root use .q
● To issue a shell command use .! <OS_command>
● .help or .? gives the full list

29

root [1] .<command>

▶ We have seen how to interactively type lines at the prompt
▶ The next step is to write "ROOT Macros" – lightweight programs
▶ The general structure for a macro stored in file MacroName.C is:

ROOT Macros

30

void MacroName() {
 < ...
 your lines of C++ code
 ... >
}

Function, no main, same
name as the file

▶ A macro is executed at the system prompt by typing:

▶ or executed at the ROOT prompt using .x:

▶ or it can be loaded into a ROOT session and then be run by typing:

Running a Macro

31

> root MacroName.C

> root
root [0] .x MacroName.C

root [0] .L MacroName.C
root [1] MacroName();

▶ We have seen how ROOT interprets and "just in time compiles" code.
ROOT also allows to compile code "traditionally". At the ROOT
prompt:

Interpretation and Compilation

32

root [1] .L macro1.C+
root [2] macro1()

int main() {
 ExampleMacro();
 return 0;
}

> g++ -o ExampleMacro ExampleMacro.C `root-config --cflags --libs`
> ./ExampleMacro

Generate shared library
and execute function

▶ ROOT libraries can also be
used to produce standalone,
compiled applications:

Advanced Users

Time For Exercises

▶ Go to folder: student-course/exercises/extra/00_C++_Interpreter

33

https://github.com/root-project/student-course/tree/main/exercises/extra/00_C%2B%2B_Interpreter

Histograms, Graphs and Functions

34

Histograms
▶ A simple form of data reduction

● Can have billions of collisions, the Physics displayed in
a few histograms

● Possible to calculate statistical quantities: mean, rms,
skewness, ...

▶ Collect quantities in bins (discrete categories)
▶ ROOT provides a rich set of histograms

● Focus on the class TH1D today: one dimensional
histogram filled with doubles

● but also available:
◼ multiple dimensions histogram TH{1,2,3} classes
◼ histograms holding different precision types: floats F,

integers I, strings S

35

My First Histogram

36

root [0] TH1D h("myHist", "myTitle", 64, -4, 4)
root [1] h.Draw()

Note that in the SWAN notebooks: the figure is not shown
directly.

You have to:

1. Either call gPad->Draw() at the end:

2. Or you can create a TCanvas and draw it:

C++

My First Histogram

37

root [0] TH1D h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

C++

And now in Python!

38

> python
>>> import ROOT
>>> h = ROOT.TH1F("myHist", "myTitle", 64,
-4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()

Python

Drawing Options

▶ See the documentation of the THistPainter class for all possible options on drawing histograms

39

https://root.cern/doc/master/classTHistPainter.html

Functions

▶ Mathematical functions are represented by the TF1 class
▶ Functions have names, formulas and line properties
▶ The formulas can be:

● Mathematical formulas (written as strings)
● C++ functions/functors/lambdas (highly performant custom functions)
● Python functions

▶ Functions can be written with and without parameters
● Crucial for fits and parameter estimation

▶ Functions (as well as integrals and derivatives of functions) can be
evaluated

40

ROOT as a Function Plotter

41

▶ The class TF1 represents one-dimensional functions (e.g. f(x)):

▶ An extended version of this example is the definition of a function
with parameters:

ROOT as a Function Plotter

42

root [0] TF1 f1("f1","sin(x)/x",0.,10.); //in brackets: name, formula, min, max

root [1] f1.Draw();

>>> f2 = ROOT.TF1("f2","[0]*sin([1]*x)/x",0.,10.)

>>> f2.SetParameters(1,1)

>>> f2.Draw()

C++

Python

Another Example: Histogram and function drawn together

43

root [0] TH1D h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()
root [3] TF1 f("g", "gaus", -8, 8)
root [4] f.SetParameters(250, 0, 1)
root [5] f.Draw("Same")

C++

Drawing - important options

44

TGraph Painter
documentation

https://root.cern.ch/doc/master/classTGraphPainter.html
https://root.cern.ch/doc/master/classTGraphPainter.html

Graphs

▶ Display points and associated
errors

▶ Fundamental to display
trends

45
See 132nd LHCC Meeting

https://indico.cern.ch/event/679087/

My First Graph

46

>>> g = ROOT.TGraph()
>>> for i in range(5): g.SetPoint(i,i,i*i)
>>> g.Draw("APL")

Python

Drawing Options

▶ See the documentation of TGraphPainter for the Graph drawing options

47

https://root.cern/doc/master/classTGraphPainter.html

Time For Exercises

▶ Go to folder:
student-course/exercises/extra/01_Histograms_Graphs_Functions

48

https://github.com/root-project/student-course/tree/main/exercises/extra/01_Histograms_Graphs_Functions

Parameter Estimation and Fitting

49

▶ Estimate parameters of a hypothetical distribution from the observed
data distribution
● y = f (x | θ) is the fit model function

▶ Find the best estimate of the parameters θ assuming f (x | θ)
▶ Both Likelihood and Chi2 fitting are supported in ROOT

What is Fitting ?

50

Example
Higgs ➞ γγ spectrum
We can fit for:
• the expected number of Higgs events
• the Higgs mass

Fitting in ROOT

▶ Create first a parametric function object, TF1, which represents our model
● need to set the initial values of the function parameters
● or use a pre-defined function

▶ Fit the data object (Histogram or Graph):
● Call the Fit method passing the function object
● various options are possible (see the TH1::Fit documentation)

▶ Examine the result:
● get parameter values, uncertainties, correlation
● get fit quality estimation

▶ Draw the fit function:
● automatically, on top of the Histogram or the Graph when calling

TH1::Fit or TGraph::Fit

51

https://root.cern.ch/doc/master/classTH1.html#a63eb028df86bc86c8e20c989eb23fb2a

Creating the Fit Function

▶ Parametric function object (TF1) :
● write formula expressions using functions:

◼ [0],[1],[2] indicate the parameters.
◼ We could also use meaningful names, like [a],[mean],[sigma]

52

TF1 f1("f1","[0]*TMath::Gaus(x,[1],[2])");

▶ Use the available functions in ROOT library
● Pre-defined functions e.g.: gaus, expo, landau…

▶ for more complex examples and fitting options see backup slides
▶ for full list of functions see the documentation of TH1::Fit(), and the

TFormula reference doc

TF1("f1","gaus");

https://root.cern.ch/doc/master/classTH1.html#a63eb028df86bc86c8e20c989eb23fb2a
https://root.cern.ch/doc/master/classTFormula.html#FormulaFuncs

Fitting Histograms example
▶ We have a histogram, h1, and we want to fit a function to it:

53

For displaying the fit parameters:

root [0] TF1 f1("f1","gaus");
root [1] h1.Fit(&f1);
 FCN=27.2252 FROM MIGRAD STATUS=CONVERGED 60 CALLS 61 TOTAL

 EDM=1.12393e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

 EXT PARAMETER STEP FIRST

 NO. NAME VALUE ERROR SIZE DERIVATIVE

 1 Constant 7.98760e+01 3.22882e+00 6.64363e-03 -1.55477e-05

 2 Mean -1.12183e-02 3.16223e-02 8.18642e-05 -1.49026e-02

 3 Sigma 9.73840e-01 2.44738e-02 1.69250e-05 -5.41154e-03

gStyle->SetOptFit(1111);

Minimization
▶ The fit is done by minimizing the least-square or maximizing the likelihood

function.
▶ A direct solution exists only in case of linear fitting

● it is done automatically in such cases (e.g fitting polynomials).
▶ Otherwise an iterative algorithm is used:

● Minuit is the minimization algorithm used by default
◼ ROOT provides two implementations*: Minuit and Minuit2

● To change the minimizer:

● Other commands are also available to control the minimization, see
documentation

54

ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");

*other algorithms exists, for example, Fumili, or
minimizers based on GSL (genetic and simulated
annealing algorithms)

https://root.cern.ch/doc/v614/classROOT_1_1Math_1_1Minimizer.html

Fitting - references for the future

55

RooFit: ROOT toolkit for complex fitting

▶ ROOT fitting can handle complicated functions
but complex models require many lines of code

▶ RooFit provides functionality for building
complex fitting models

▶ Fitting often requires Normalization of pdfs
● not always trivial to perform → RooFit does it

automatically
▶ RooFit also provides:

● MC data generation from model
● advance visualization of fitting results
● simultaneous fit to different data samples
● full model description for reusability
● built-in optimization for optimal computational

performances

56

For more info see the manual or
the RooFit courses

https://root.cern/manual/roofit/
https://root.cern/get_started/courses/#roofitroostats-tutorials

TMVA: Machine Learning in ROOT

▶ ROOT ML tools are provided in TMVA (Toolkit for MultiVariate Analysis)
▶ TMVA provides a set of algorithms for standard HEP usage

● Common interface to different algorithms with consistent evaluation and
comparison

● Capability for classification and regression
● Embedded in ROOT: direct connection to input data (ROOT I/O)
● Most popular algorithms are BDT and ANN (also supporting some DL tools)

▶ Interfaces to external ML library :
● e.g. to Python tools: scikit-learn, Tensorflow/Keras, PyTorch

▶ Fast inference system for Deep Learning models (SOFIE) and BDT
● new tool to generate code and easily evaluate ML models in ROOT that can be

trained with other tools (e.g Keras, PyTorch) or xgboost
▶ For more info see the manual

57

https://root.cern/manual/tmva/

Time For Exercises

▶ Go to folder: student-course/exercises/extra/02_Fitting
● plenty of examples – start from the easier ones, continue with

more complex

▶ Note on extras – how to make nice plots:

● see the backup slides

● see extra tutorial module, go to folder:
student-course/exercises/extra/05_Graphics

58

https://github.com/root-project/student-course/tree/main/exercises/extra/02_Fitting
https://github.com/root-project/student-course/tree/main/exercises/extra/05_Graphics

Reading and Writing Data

59

The ROOT File

▶ In ROOT, objects are written in files*, represented by
TFile instances

▶ TFiles are binary and can be compressed (transparently
for the user)

▶ TFiles are self-descriptive:
● The information how to retrieve objects from a file is stored with the

objects

* this is an understatement - we’ll not go into the details in this course!

60

TFile in Action

61

TFile f("myfile.root", "RECREATE");

TFile in Action: Writing

62

TFile f("file.root", "RECREATE");

TH1F h("h", "h", 64, 0, 8);

h.Write("h");

f.Close();
▶ Write to a file
▶ Close the file and make sure the

operation succeeded
> rootls -l file.root
TH1F Jun 24 15:02 2022 h "h"

C++

TFile in Action: Reading

63

TFile f("file.root");

TH1F* h = f.Get<TH1F>("h");

h->Draw();

import ROOT

f = ROOT.TFile("file.root")

f.h.Draw()
Get the histogram by name!
Possible only in Python

C++

Python

Listing TFile Content

64

▶ TBrowser interactive tool
> root [0] TBrowser t

▶ rootls tool: list content
▶ TFile::ls(): prints content

● Great for interactive usage

Time For Exercises

▶ Go to folder: student-course/exercises/extra/03_Working_With_Files

65

https://github.com/root-project/student-course/tree/main/exercises/extra/03_Working_With_Files

The ROOT Columnar Format

66

Columns and Rows

▶ High Energy Physics: many statistically independent
collision events

▶ Create an event class, serialise and write out N instances
into a file?
→ No. Very inefficient!

▶ Organise the dataset in columns

67

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or "branches"←

68

can contain any kind
of c++ object

69

Relations Among Columns

The TTree data format

A columnar dataset in ROOT is represented by the class TTree:

▶ Also called tree, columns also called branches

▶ Columns can contain any arbitrary C++ type

70

An entry point to modern ROOT

71

RDataFrame: quick how-to

72

1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce

results (e.g. fill a histogram)

Simple Code Example

73

import ROOT

df = ROOT.RDataFrame("t", "f.root")

h = df.Filter("theta > 0").Histo1D("pt")

h.Draw()
2. Cut on
theta

3. Fill histogram
with pt

1. Build RDataFrame

Lazily build
computation

graph

Trigger
execution

Filling multiple histograms

74

h1 = df.Filter("theta > 0").Histo1D("pt")

h2 = df.Filter("theta < 0").Histo1D("pt")

h1.Draw() // event loop is run lazily once here

h2.Draw("SAME") // no need to run loop again here

Book all your actions upfront. The first time a result is
accessed, RDataFrame will fill all booked results.

75

More on histograms

h = df.Histo1D(("myName", "Title;x", 10, 0., 1.),"x")

You can specify a model histogram with
● a name and a title
● a predefined axis range
Here, the histogram is created with 10 bins ranging from 0 to 1,
and the axis is labelled "x".

76

Define a new column

m = (

 df.Filter("x > y")

 .Define("z", "sqrt(x*x + y*y)")

 .Mean("z")

)

`Define` takes the name of the new column and its
expression. Later you can use the new column as if it

was present in your data.

77

Working with collections

h = df.Define(

 "good_pt",

 "sqrt(px*px + py*py)[E>100]"

).Histo1D("good_pt")

sqrt(px*px + py*py)[E>100]:

● px, py and E are columns the elements of which are RVecs

● Operations on RVecs like sum, product, sqrt preserve the dimensionality of the array

● [E>100] selects the elements of the array that satisfy the condition

● E > 100: boolean expressions on RVecs such as E > 100 return a mask, that is an array with information
on which values pass the selection (e.g. [0, 1, 0, 0] if only the second element satisfies the condition)

78

Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hx = d2.Histo1D("x");

You can store transformed data-frames in variables,
then use them as you would use an RDataFrame.

data

filter
x > 0

histo
x

histo
z

define
z

d

d2

79

df = (df.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut"))

df.Report().Print()

Cutflow reports

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

When called on the main RDF object, `Report` prints
statistics for all filters with a name

80

new_df = (

 df.Filter("x > 0")

 .Define("z", "sqrt(x*x + y*y)")

 .Snapshot("tree", "newfile.root")

)

Saving data to file

We filter the data, add a new column, and then save
everything to file. No boilerplate code at all.

Using callables instead of strings

81

// define a c++11 lambda - an inline function - that checks "x>0"

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = df.Filter(IsPos, {"theta"}).Histo1D("pt");

h->Draw();

any callable (function, lambda, functor class) can be
used as a filter, as long as it returns a boolean

Expert Feature

RDataFrame: declarative analyses

82

● full control over the analysis
● no boilerplate
● common tasks are not already implemented?
● parallelization is not trivial?

df = ROOT.RDataFrame("t", "f.root")

df = df.Define("dphi",

 "MyDeltaPhi(phi1, phi2)")

h = df.Histo1D("dphi")

h.Draw()

RDataFrame: parallelism

83

● full control over the analysis
● no boilerplate
● common tasks are already implemented
● parallelization is trivial

ROOT.EnableImplicitMT()

df = ROOT.RDataFrame("t", "f.root")

df = df.Define("dphi",

 "ROOT::VecOps::DeltaPhi(phi1, phi2)")

h = df.Histo1D("dphi")

h.Draw()

84

C++ / JIT / PyROOT

d.Filter("th > 0").Snapshot("t","f.root","pt*");
C++ and just-in-time compiled code

PyROOT -- just leave out the `;`
d.Filter("th > 0").Snapshot("t","f.root","pt*")

Time For Exercises

▶ Go to folder: student-course/exercises/extra/04_RDataFrame

85

https://github.com/root-project/student-course/tree/main/exercises/extra/04_RDataFrame

Backup - fitting details

86

Building More Complex Functions
▶ Any C++ object (functor) implementing
 double operator() (double *x, double *p)

● also a lambda function (with Cling and C++-11)

87

a lambda can be used also as a string expression, which will be JIT’ed by CLING

struct Function {
double operator() (double *x, double *p){
 return p[0]*TMath::Gaus(x[0],p[1],p[2]);
}

};

Function f;
TF1 f1("f1",f,xmin,xmax,npar);

TF1 f1("f1",[](double *x, double *p){return p[0]*x[0];},0,10,1);

TF1 f1("f1","[](double *x, double *p){return p[0]*x[0];}",0,10,1);

 Functionality provided by TFormula

TFormula is based on Cling. Additional functionality provided:
▶ better parameter definition

● TF1("f1","gaus(x, [Constant],[Mean],[Sigma])");
▶ function composition by concatenating expressions

● TF1 fs("sigma","[0]*x+[1]");
● TF1 f1("f1","gaus(x,[C],[Mean],sigma(x,[A],[B])");

▶ normalized sum for component fitting
● TF1 model("model","NSUM(expo, gaus)"

▶ convolutions
● TF1 voigt("voigt", "CONV(breitwiegner, gaus)", xmin, xmax);

▶ can define vectorized functions for faster fitting and evaluation
● see vectorizedFit tutorial

▶ support for auto-differentiation (automatic generation of gradient and
Hessian)

88

https://root.cern.ch/doc/master/vectorizedFit_8C.html

Fitting Options

▶ Likelihood fit for histograms

● option "L" for count histograms;

● option "WL" in case of weighted counts.

▶ Default is chi-square with observed errors (and skipping empty bins)

● option "P" for Pearson chi-square

expected errors, and including empty bins

▶ Use integral function of the function in bin

▶ Compute MINOS errors : option "E"
89

h1->Fit("gaus","L");

h1->Fit("gaus","LW");

h1->Fit("gaus","P");

h1->Fit("gaus","L I");

h1->Fit("gaus","L E");

Some More Fitting Options

▶ Fitting in a Range
●

▶ For doing several fits
●

▶ Quiet / Verbose: option "Q"/"V"
●

▶ Avoid storing and drawing fit function (useful when fitting many times)
●

▶ Save result of the fit, option "S"
●

90All fitting options documented in reference guide or Manual

h1->Fit("gaus","","",-1.5,1.5);

h1->Fit("expo","+","",2.,4);

h1->Fit("gaus","V");

h1->Fit("gaus","L N 0");

auto result = h1->Fit("gaus","L S");
result->Print("V");

https://root.cern/manual/fitting/

Parameter Errors

Errors returned by the fit are computed from the second derivatives of the
log-likelihood function

● Assume the negative log-likelihood function is a parabola around minimum
● This is true asymptotically and in this case the parameter estimates are also

normally distributed.
● The estimated correlation matrix is then:

91

Parameter Errors

▶ A better approximation to estimate the confidence level of the
parameter is to use directly the log-likelihood function and look at
the difference from the minimum.

92

– Method of Minuit/Minos (Fit option "E")
– obtain a confidence interval which is in general not

symmetric around the best parameter estimate

auto r = h1->Fit(f1,"E S");

r->LowerError(par_number);

r->UpperError(par_number);

Backup - Creating a Nice Plot Survival Kit

93

The Markers

94

kDot=1, kPlus, kStar, kCircle=4, kMultiply=5,
kFullDotSmall=6, kFullDotMedium=7, kFullDotLarge=8,
kFullCircle=20, kFullSquare=21, kFullTriangleUp=22,
kFullTriangleDown=23, kOpenCircle=24, kOpenSquare=25,
kOpenTriangleUp=26, kOpenDiamond=27, kOpenCross=28,
kFullStar=29, kOpenStar=30, kOpenTriangleDown=32,
kFullDiamond=33, kFullCross=34 etc…

Also available
through more friendly
names ☺

From the TAttMarker documentation:
https://root.cern/doc/master/classTAttMarker.html

https://root.cern.ch/doc/master/classTAttMarker.html

My First Graph

95

root [3] g.SetMarkerStyle(kFullTriangleUp)

My First Graph

96

root [3] g.SetMarkerStyle(kFullTriangleUp)
root [4] g.SetMarkerSize(3)

My First Graph

97

root [5] g.SetMarkerColor(kAzure)
root [6] g.SetLineColor(kRed - 2)
root [7] g.SetLineWidth(2)
root [8] g.SetLineStyle(3)

Question:
How do you find information
on line styles?

See TAttLine documentation

https://root.cern.ch/doc/master/classTAttLine.html

The Colors (TColorWheel)

98

My First Graph

99

root [9] g.SetTitle("My Graph;The X;My Y")

Shortcut:
Directly set titles for x
and y axis.

My First Graph

100

root [10] gPad->SetGrid()

My First Graph

101

root [10] auto txt = "#color[804]{My text #mu {}^{40}_{20}Ca}"
root [11] TLatex l(.2, 10, txt)
root [12] l.Draw()

My First Graph

102

root [13] gPad->SetLogy();

