CLIC Post-linac Beam Collimation Studies Plans from IFIC, Valencia

Javier Resta Lopez
IFIC, Valencia University

9th June 2011

Collimation system optimisation

- We plan to participate in the studies towards the optimisation of the CLIC collimation system design, e.g.
- Optical optimisation to improve the performance of the system
- Optimal mechanical design of the CLIC collimators
- Recently, several aspects of the design of the collimator system for CLIC at 3 TeV CM have been reviewed and optimised. A similar optimisation process has to be applied to the CLIC option at 500 GeV CM, and we plan to contribute to this activity (in collaboration with CERN colleagues)

Energy collimation and passive protection for the BDS

Context:

- The CLIC collimation section is conceived as a system for passive protection in the BDS against miss-steered beams coming from the main linac
- The design of the energy collimators must be sufficiently robust to dispose (without fracture) of the total beam power in case of failure events
- Preliminary simulation studies (using FLUKA+ANSYS) have shown it is difficult to avoid the fracture or deformation of both the energy spoiler and the energy absorber.

Energy collimation and passive protection for the BDS

Regarding the survivability condition of the energy collimator for CLIC, our plans include the following studies:

- New simulation studies of the beam interaction with the collimator, assuming more realistic conditions (in collaboration with J. Luis Fernandez-Hernando from ASTeC, Daresbury, UK)
- Investigation of alternative materials other than Be for the energy collimation system (in collaboration with J. Luis Fernandez-Hernando)
- Investigation of alternative techniques of collimation, e.g. nonlinear collimation

Nonlinear optics for energy collimation

- Multipolar element (sextupole, octupole,...) playing the role of spoiler, increasing the transverse beam density at downstream mechanical collimators
- Cancellation of geometric aberrations by a second multipole of the same family
- Additional multipoles to cancel higher order chromo-geometric aberrations

Nonlinear optics for energy collimation Example

Beam spot size at spoiler position vs skew sextupole strength for different beam mean energy offsets (from tracking simulations)

Collimator wakefield measurements

- Recently CLIC project members and collaborators from the Manchester University and SLAC have presented a proposal for performing a new set of collimator wakefield measurements at FACET
- The IFIC accelerator group is interested in participating in this experimental test, in the framework of the CLIC collaboration. In principle, we could contribute to the following activities:
 - Analytical calculation of wakefield kick factors
 - Simulation of wakefield effects using specific codes
 - If necessary, design and construction of new collimator prototypes, following the design specifications for CLIC collimators.
 - Development of the necessary software for DAQ and posterior data analysis
 - Participation in the requested experimental shifts
 - Data analysis and comparison with results from theory and simulations

Accelerator Physics Group at IFIC

http://gap.ific.uv.es

- Angeles Faus Golfe (project leader)
- Javier Resta Lopez (research associate): responsible for the collimation studies at IFIC.
- Juan Jose Garcia Garrigos (electronic engineer): technical support
- Cesar Blanch Gutierrez (mechanical engineer): technical support
- PhD student (starting in September 2011): he/she will be available to participate in the collimator wakefield measurement tests at FACET.

In principle, funding guaranteed during the period 2011-2013