

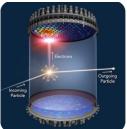
DRD2: Liquid Detectors

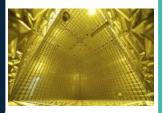
Giuliana Fiorillo Roxanne Guenette

4th Meeting of the DRDC 13 November 2024

Our scientific communities Dark Matter Neutrinos Ονββ Oscillation precision Direct detection Search for Majorana measurements (δ_{CP}, (WIMPs, ...) neutrinos mass ordering, θ_{23} octant, sterile vs) Neutrino interactions (from CEvNS to DIS) Astro neutrinos **BOONE** Durgoin

2

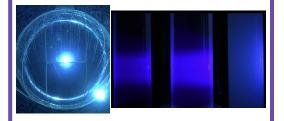

SNO+


EXO/nEXC

Our technology communities

Noble Elements

- Argon & Xenon
- Ionisation charge & transport
- VUV Scintillation, light propagation & detection



Liquid Scintillators

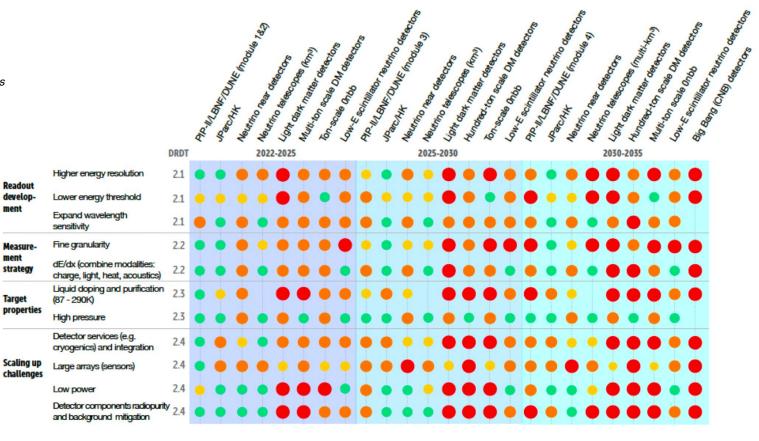
- Visible Scintillation, light
- propagation
- Scintillator properties
- Isotope loading

- Cherenkov light, light propagation
- Doping for n-capture

Main drivers

DUNE programme; Hyper-K programme; neutrino near detectors; neutrino telescopes; multi-tonne scale dark matter detectors; light dark matter detectors; tonne-scale 0vbb experiments; low-energy scintillator neutrino detectors.

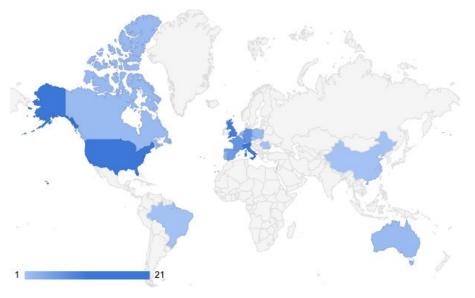
Our roadmap


Detector R&D Research Themes

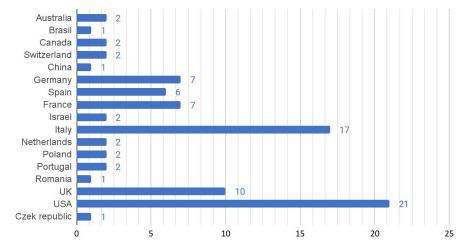
DRDT 2.1 - Develop readout technology to increase spatial and energy resolution for liquid detectors

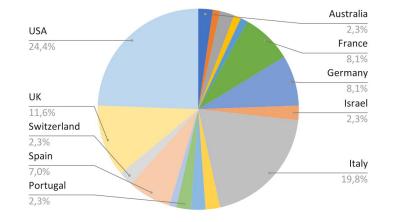
DRDT 2.2 - Advance noise reduction in liquid detectors to lower signal energy thresholds

DRDT 2.3 - Improve the material properties of target and detector components in liquid detectors

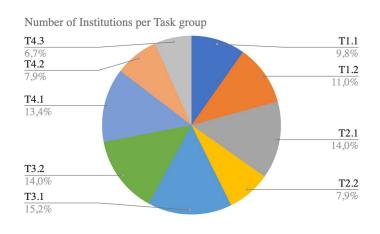

DRDT 2.4 - Realise liquid detector technologies scalable for integration in large systems

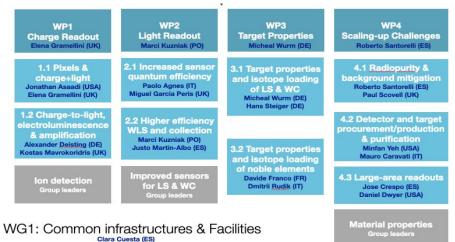
Our scientific strategy: Work Packages


WP1 Charge Readout	WP2 Light Readout	WP3 Target Properties	WP4 Scaling-up Challenges
1.1 Pixels & charge+light	2.1 Increased sensor quantum efficiency	3.1 Target properties and isotope loading of LS & WC	4.1 Radiopurity & background mitigation
1.2 Charge-to-light, electroluminescence & amplification	2.2 Higher efficiency WLS and collection	3.2 Target properties	4.2 Detector and target procurement/production & purification
lon detection	Improved sensors for LS & WC	and isotope loading of noble elements	4.3 Large-area readouts
WG A: Common	Material properties		


The DRD2 Collaboration

86 Participating Institutions17 Countries205 Members


CB Institutions



Progress in DRD2 since approval

- First Collaboration Meeting (02/2024) (indico link)
- CB Chair election: Walter Bonivento
- Co-spokespersons election: Giuliana Fiorillo, Roxanne Guenette
- All WP/Tasks leaders appointed and approved
- Creation of first WG and appointment of 1 convener
- Series of Topical Workshop to engage the community (<u>indico meetings</u>)

TBD

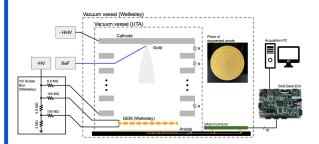
Progress in DRD2 since approval

- A lot of work done on consolidating the Deliverables and the "commitments" of each Tasks to prepare the MOU Annexes
- Concerns from many of our members on interactions with funding agencies, commitments and lack of funding... under discussion
- We send the **draft** MOU Annexes to Helge Meinhard as requested on 8 Nov., but we need to solve the concerns of our groups before making them public

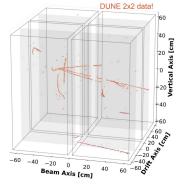
nnex 1	Collaborating Institutions and th	DICD	Cona	boration			101	emoran	Juli V.	i ono	erstandi					100-	draft-7No		
												Т				Т	INS	Г68	-
Country	Collaborating Institution			Repo	ton	R	eport	on optin	uised V	MIS (VUV to						INS		_
AU	Griffith University	D2.4			ised WLS			and eva				01	/01/20	24 30/	09/20	29	INST		
40 AU	James Cook University					+						+		+		+	INST		_
3R																	INS		
	San Paulo University	D2.5			n report o	n D in	esign	elemer	n VUV	/ light light	collecti readout	for 01	/01/20	24 01/	06/20	29	INST		
A	SNOLAB			light	ollection	lie	quid s	intillate	ors	c							INST		
A	TRIUMF																INST		
н	University of Bern											<u> </u>				-	INS	109	
сн	University of Zurich	7.3.5		Cont	ibution	s of I	Partie	ipatin	g Ins	titut	ions a	nd Fu	ındin	g Age	ncie	s to t	he Woi	k	
N	Institute of High Energy Physics, Chinese Academy of Sciences, China	The	ectima	Pack															for
			- or man		TI CITA ICI.			the the	Perc	on p	(.			a cam	. ede		m) and		
Z	Institute of Physics, Prague, Czech Academy of Sciences	the l	fetim	e of th	Work I	acka	ige.												
		the li	fetim	e of th	e Work I	acka	ige.												
DE	Sciences	the l	fetim D2.1	e of th	e Work I	заска	ige.	D2.3	<		D2.4			D2.5			Total		
DE	Sciences Heidelberg University	the h		FTE F	D2.2	FTE		D2.3	FIE	FTE	D2.4	FTE	FTE	D2.5	FTE			FTE	
DE DE	Sciences Heidelberg University Humbold University Berlin	code	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 TE ng Mater Tec al	FTE i (Phy s+	FTE (Eng +Tec	Materi al		(Eng +Tec	Materi al		FTE (Eng +Tec	Materi al	(Phy s+	FTE (Eng +Tec			(Eng +Teo
DE DE DE	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz		D2.1 Mater ial	FTE F (Phy (I	D2.2 TE ng Mater Tec al (k€)	FTE (Phy s+ PhD)	FTE (Eng	Materi al (k€)		(Eng +Tec h)	Materi al (k€)		FTE (Eng +Tec	Materi	(Phy s+	FTE (Eng +Tec			(Eng +Ter h)
DE DE DE DE	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PRISMA Cluster of Excellence Mainz	code	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 ng Mater fec al (k€) 200,00	FTE (Phy s+ PhD) 1,00	FTE (Eng +Tec h)	Materi al (k€)		(Eng +Tec h)	Materi al (k€)		FTE (Eng +Tec	Materi al	(Phy s+	FTE (Eng +Tec	Material (k€)	(Phys + PhD) 1,60	(Eng +Teo h) 1,00
DE DE DE DE DE DE	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PHISMA Cluster of Excellence Mainz Technische Universität München	code INST05	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 ng Mater fec al (k€) 200,00	FTE (Phy s+ PhD) 1,00	FTE (Eng +Tec h) 0,50	Materi al (k€)	(Phys + PhD) 0,60	(Eng +Tec h)	Materi al (k€)		FTE (Eng +Tec	Materi al	(Phy s + PhD)	FTE (Eng +Tec h)	Material (k€) 200,00	(Phys + PhD) 1,60 0,60	(Eng +Teo h) 1,00
DE DE DE DE DE DE DE	Sciences Heidelberg University Humbold University Berlin Iohannes Gutenberg Universitaet Mainz PHISMA Cluster of Excellence Mainz Technische Universität München University of Freiburg.	code INSTO5 INSTO9	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 ng Mater fec al (k€) 200,00	FTE (Phy s+ PhD) 1,00	FTE (Eng +Tec h) 0,50	Materi al (k€) 0,00	(Phys + PhD) 0,60	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD)	FTE (Eng +Tec h) 0,60	Material (k€) 200,00 50,00	(Phys + PhD) 1,60 0,60	(Eng +Teo h) 1,00 0,00 1,10
DE DE DE DE DE SE SS	Sciences Heidelberg University Humbold University Berlin Uohannes Gutenberg Universitaet Mainz PHISMA Cluster of Excellence Mainz Technische Universität München University of Freiburg. University of Muenster	code INSTO5 INST09 INST14	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 ng Mater fec al (k€) 200,00	FTE (Phy s+ PhD) 1,00	FTE (Eng +Tec h) 0,50	Materi al (k€) 0,00	(Phys + PhD) 0,60	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (k€) 200,00 50,00 210,00	(Phys + PhD) 1,60 0,60 0,75 1,50	(Eng +Tec h) 1,00 0,00 1,10
DE DE DE DE DE DE SS SS	Sciences Heidelberg University Humbold University Berlin Uohannes Gutenberg Universitaet Mainz PHISMA Cluster of Excellence Mainz Technische Universität München University of Freiburg. University of Muenster CIEMAT	code INST05 INST09 INST14 INST15	D2.1 Mater ial	FTE F (Phy (I s+ +	D2.2 re ng Mater (kt) 200,00 50,00	FTE (Phy s+ PhD) 0 0,60	FTE (Eng +Tec h) 0,50	Materi al (k€) 150,00	(Phys + PhD) 0,60	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (k€) 200,00 50,00 210,00 0,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60	(Eng +Tes h) 1,00 0,00 1,10 0,50 0,51
DE DE DE DE DE DE SS SS	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PHSNA Clutter of Excellence Mainz Technische Universität München University of Freiburg University of Muenster CEMAT Universidad Complutense Madrid	code INST05 INST09 INST14 INST15 INST24	D2.1 Mater ial (k£)	FTE F (Phy (I s+ +	D2.2 re rec al (kC) 200,00 50,00 0,00	FTE (Phy s+ PhD) 0 0,60	FTE (Eng +Tec b) 0,50	Materi al (k€) 150,00	(Phys + PhD) 0,60	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (kC) 200,00 50,00 210,00 0,00 80,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60 0,10	(Eng +Teo h) 1,00 0,00 1,10 0,50 0,50
DE DE DE DE DE DE DE SS	Sciences Heidelberg University Humbold University Berlin Iohannes Gutenberg Universitaet Mainz PRISMA Cluster of Excellence Mainz Crebnische Universitä München University of Freiburg University of Muenster CEMAT Universidad Complutense Madrid University of Granada	code INST05 INST14 INST15 INST25	D2.1 Mater ial (k£)	FTE F (Phy (s+ + PhD) h	D2.2 TE ng Mater (kč) 200,00 50,00 0,00 0,00	FTE (Phy >+ PhD) 0 1,00 0 0,60	FTE (Eng +Tec b) 0,50	Materi al (k€) 150,00	(Phys + PhD) 0,60	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (k£) 200,00 50,00 210,00 0,00 80,00 0,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60 0,10 0,70	(Eng +Tee h) 1,00 0,00 0,50 0,50 0,00
DE DE DE DE DE DE SE	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PRISMA Cluster of Excellence Mainz Chrindse Universität München University of Freiburg University of Freiburg University of Waenster CIEMAT University of Granada University of Valencia and CSIC University of Zaragoza	code INSTO5 INST09 INST14 INST15 INST26	D2.1 Mater ial (k£)	FTE F (Phy (s+ + PhD) h	D2.2 TE ng Mater (kč) 200,00 50,00 0,00 0,00	FTE (Phy >+ PhD) 0 1,00 0 0,60	FTE (Eng +Tec h) 0,50	Materi al (k€) 150,00	(Phys + PhD) 0,60 0,10	(Eng +Tec h) 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (kE) 200,00 50,00 210,00 0,00 80,00 0,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60 0,10 0,70	(Eng +Tes h) 1,00 1,10 0,50 0,50 0,50 0,00 0,10
DE DE DE DE DE DE SS SS SS SS SS	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PRISMA Cluster of Excellence Mainz Technische Universität München University of Muenster CIEMAT University of Granada University of Valencia and CSIC University of Zaragoza USC/GFAE	code INST05 INST09 INST14 INST15 INST24 INST25 INST26 INST27	D2.1 Mater ial (k£)	FTE F (Phy (s+ + PhD) h	D2.2 TE ng Mater (kč) 200,00 50,00 0,00 0,00	FTE (Phy >+ PhD) 0 1,00 0 0,60	FTE (Eng +Tec h) 0,50	Materi al (k€) 150,00 80,00	(Phys + PhD) 0,60 0,10 0,60	(Eng +Tec h) 0,50 0,50	Materi al (k€)		FTE (Eng +Tec	Materi al (k€) 60,00	(Phy s + PhD) 0,65	FTE (Eng +Tec h) 0,60	Material (kč) 200,00 50,00 210,00 0,00 80,00 0,00 0,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60 0,70 0,70 0,70	(Eng +Tes h) 1,00 0,00 1,10 0,50 0,50 0,00 0,00 0,10 0,20
-2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Sciences Heidelberg University Humbold University Berlin Johannes Gutenberg Universitaet Mainz PRISMA Cluster of Excellence Mainz Chrindse Universität München University of Freiburg University of Freiburg University of Waenster CIEMAT University of Granada University of Valencia and CSIC University of Zaragoza	code INST05 INST05 INST14 INST15 INST27 INST27 INST27 INST27	D2.1 Mater ial (k£)	FTE F (Phy (s+ + PhD) h	D2.2 TE ng Mater (kč) 200,00 50,00 0,00 0,00	FTE (Phy >+ PhD) 0 1,00 0 0,60	FTE (Eng +Tec h) 0,50	Materi al (k£) 0,00 150,00 80,00	(Phys + PhD) 0,60 0,10 0,60	(Eng +Tec h) 0,50 0,50 0,50	Materi al (k€)		FTE (Eng +Tec h)	Materi al (k€) 60,00	(Phy s + PhD) 0,65 1,50	FTE (Eng +Tec h) 0,60 0,50	Material (kE) 200,00 50,00 210,00 0,00 0,00 0,00 0,00 0,00	(Phys + PhD) 1,60 0,60 0,75 1,50 0,60 0,10 0,70 0,70 0,80 0,40	(Eng +Ter h) 1,00 0,00 0,50 0,00 0,00 0,00 0,00 0,00

WP1.1 Pixels & charge+light (J. Asaadi & E. Gramellini)

• Consolidated the scientific programme to 3 Deliverables: TPC pixelation, Pixel scalability, Charge + Light readouts

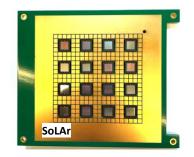

	Title	Description	Institutions
D1.1	Pixel readout prototype	Prototype of lower power and lower pixel thresholds to the limit of CMOS capabilities	5
D1.2	Large-scale pixel readout design	Design of a pixel readout with O(100 million) channels	4
D1.3	Light-sensitive pixel readout design	Design (simulation and prototype) of maximal photocathode coverage and QE in an integrated fC charge and VUV light sensing scheme for pixel TPCs	7

WP1.1 Pixels & charge+light (J. Asaadi & E. Gramellini)


Scientific progress:

D1.1 First operation of a multi-channel Q-Pix prototype with COTS component

(JINST 19 (2024) 06, P06007)


D1.2 Deployment and operation of the LArPix readout concept in the 2x2 demonstrator on the NuMI beam

From Andrew Cudd at NuFact

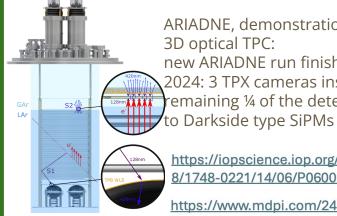
CH: Bern ES: University of Granada IT: INFN BO, MIB UK: Imperial, Manchester US: SLAC, MIT, UTA, Wellesley

> D1.3 Data analysis from the first SoLAr prototype (accepted in JINST)

WP1.2 Charge-to-light, EL & Amplification (A. Deisting & K. Mavrokoridris)

• Consolidated the scientific programme to 3 Deliverables: camera and SiPM-based particle tracking, novel devices for charge amplification in single- and dual-phase, large-scale demonstrators

	Title	Description	Institutions
D1.4	Prototype for imaging light readout	Prototypes for light imaging of charge amplification with cameras and SiPMs	2
D1.5	Report on novel charge amplification devices	Report on novel devices for charge amplification in single- and dual-phase detectors	12
D1.6	Report on large-scale tests for amplification devices	Report on large-scale tests in single- and dual-phase LAr and LXe detectors	4


WP1.2 Charge-to-light, EL & **Amplification**

(A. Deisting & K. Mavrokoridris)

Scientific Progress:

D1.4 Publications towards imaging light readouts

Demonstration of energy resolution with SiPMs imaging plane (NEXT-White) Contreras, T., et al., J. High Energ. Phys. 2024, 112

ARIADNE, demonstration at scale of full 3D optical TPC: new ARIADNF run finished in summer 2024: 3 TPX cameras installed, with the remaining ¼ of the detector dedicated

https://iopscience.iop.org/article/10.108 8/1748-0221/14/06/P06001

https://www.mdpi.com/2410-390X/4/4/35

AU: Griffith. James Cook BR: University of São Paulo DE: Mainz, Freiburg FR: LPNHE IL: Tel Aviv University NL: Nikhef PT: LIP Coimbra UK: Liverpool, Manchester US: UC Riverside

D1.5 New charge amplification structure

Glass THGEMs (54cm x 54cm) for ARIADNE

WP2.1 Increase sensor quantum efficiency (P. Agnes & M. Garcia Peris)

• Consolidated the scientific programme to 3 Deliverables: effort targeted at efficiency in the VUV and at cryogenic temperatures, complementarity with WP1 of DRD4

	Title	Description	Institutions
D2.1	Sensor development for VUV sensitivity	Development and characterization of organic photosensors, coatings and passivation methods and of SPAD geometry for VUV detection	7
D2.2	Prototype SPAD arrays	Prototypes and characterization of new SPAD arrays for 3D-intergrated FSI and BSI, analog BSI and monolitich arrays	8
D2.3	Report on VUV-optimized sensor	Report on the performance of new VUV-optimised sensors in term of PDE, noise and application to rare-event seraches	8

WP2.1 Increase sensor quantum efficiency

(P. Agnes & M. Garcia Peris)

Scientific Progress:

D2.1 Funding updates

- Funding secured to acquire and test large area organic semiconductors.
- Funding available (Open University) for VUV optimised coating technologies for CMOS detectors.
- Funding proposal submitted (STFC) to test graphene coating (Oxford, Manchester) on existing SiPM devices.

D2.2 Arrays & funding updates

- 3D integrated FSI-SPAD arrays (Sherbrooke+Teledyne-DALSA): First prototypes late 2024

- Funding secured for 3D integrated BSI-SPAD arrays (Heidelberg-TRIUMF-Fraunhofer)

- BSI-SPAD arrays (Bo-SLAC-FBK): 2 engineering runs (INFN IBIS) 1 planned (INFN IBIS_NEXT). Funding available

- Funding secured for a production run of monolithic CMOS-SPAD arrays (Fermilab-GlobalFoundries). First delivery expected in March 2025.

D2.3 Facility networks updates

- Detailed characterization setups for detection efficiency.
 - →Setup assembly ongoing at INFN-Naples and INFN-LNGS, CIEMAT.
 →Setup operational at TRIUMF
- Operation in LAr and LXe for noise rates of single photon detection.
 - →Setup operational at INFN-Ferrara and TRIUMF
 - →Funding allocated at INFN-LNGS/GSSI
- Operation for rare-event search experiments.
 - →Funding available at UC Riverside and University of Tel Aviv for small scale TPCs

WP2.2 Higher efficiency WLS and collection (M. Kuzniak & J. Martin-Albo)

• Consolidated the scientific programme to 2 Deliverables: WLS and light collection optimization

	Title	Description	Institutions
D2.4	Report on optimised WLS	Report on optimised WLS (VUV to visible) and evaporation systems	3
D2.5	Design report on light collection	Design report on VUV light collection in noble elements and light readout for liquid scintillators	10

WP2.2 Higher efficiency WLS and collection

Scientific Progress:

D2.4: Finalized analysis of a large-scale PEN WLS test at CERN (in collaboration with the Neutrino Platform)

- Optimal reflector/WLS combination previously selected with bench top measurements (<u>Goldbrunner et al., LIDINE 2023</u>)
- > 4 m² of commercial industry grade PEN + ESR tested over 2 weeks in a 2 tonne LAr dewar
- LY consistent with expectation, with no evidence for degradation (<u>V. Gupta et al., LIDINE</u> <u>2024</u>)

Led by Astrocent, CERN, U. Edinburgh, U. Hawaii, Nikhef, TUM, Uni. Zurich

(M. Kuzniak & J. Martin-Albo)

D2.4: other updates

- Ongoing efforts on optimized PEN synthesis
 - Custom synthesised PEN already as good or better than commercially available PEN, but still less efficient than TPB
- Complementary WLS characterization/qualification facilities:
 Setup for cryogenic WLS characterization operational at Astrocent (<u>Choudhary et al.</u>, <u>LIDINE 2024</u>)
- In parallel, new promising polymeric materials under investigation
 PVN:(Kuźniak et al., LIDINE 2024)
- •Strong interest in all the above from the DUNE community

D2.5: Publications

•Novel simulation method for large-area metalenses •A.Martins et al., <u>J. Opt. Soc.</u> <u>Am. B 41, 1261-1269 (2024)</u>

•First VUV metalenses oA.Martins et al., <u>arXiv:2401.11315</u>

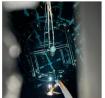
WP3.1 Target properties and isotope loading of LS & WC (H. Steiger & M. Wurm)

• Consolidated the scientific programme to 2 Deliverables: hybrid Cherenkov/scintillator systems, opaque scintillators, and isotope loading for neutrinoless double-beta decay ($0\nu\beta\beta$) searches and neutron tagging

	Title	Description	Institutions
D3.1	Ton-scale demonstrators of novel liquid scintillators	Lab- and ton-scale demonstrators for hybrid and opaque scintillators, publication on properties and performances and improved microphysics models	16
D3.2	Demonstrators for liquid target loading	Demonstration of high Gd loading at ton-scale and of high concentration of isotope loading	9

WP3.1 Target properties and isotope loading of LS & WC

(H. Steiger & M. Wurm)


Scientific Progress:

D3.1: Progress at ton-scale on hybrid (water-based) scintillators detectors:

BNL prototypes: 1-ton \rightarrow 30-ton

production, purification and characterization of WbLS
status: construction of 30-ton prototype is on-going

ANNIE (FNAL): SANDI Acrylic Vessel

- •hybrid reconstruction of beam neutrinos (GeV range) •recent deployment of SANDI vessel with 365kg of
- Gd-loaded WbLS
- \rightarrow detection of final-state neutrons
- \rightarrow Cherenkov/scintillation separation with PMTs & LAPPDs

EOS (Berkeley) •hybrid det

- •hybrid detection at MeV energies
- •detector complete, final preparations for filling with WbLS
- \rightarrow coordinated program of German/US groups
- \rightarrow link to BUTTON in the UK

D3.1 : demonstration of Cherenkov/scintillation separation in novel bi-solvent slow scintillators

- \rightarrow with small-scale lab setup (Berkeley)
- \rightarrow **new collaborative effort** to demonstrate in larger vessel (30L scale) in a particle beam at INFN-LNL Legnaro (TUM/**Padova**/Mainz)

D3.1 : group of **INFN Milano** (Caccianiga) recently joined DRD2 for lab-scale characterization of hybrid scintillators

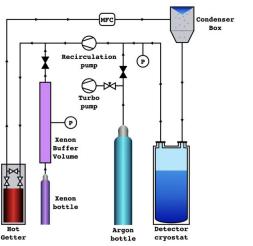
D3.1 : two joint publications on bi-solvent slow scintillators and water-based liquid scintillator using Triton-X (TUM/Mainz)

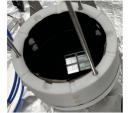
D3.2 : tellurium-doping of LAB-based conventional and slow scintillators with high loading factors, using different techniques

 \rightarrow Oxford/SNOLab, IHEP Beijing (recently joined DRD2), TUM

WP3.2 Target properties and isotope loading of noble elements (D. Franco & D. Rudik)

• Consolidated the scientific programme to 2 Deliverables: noble liquids microphysics + properties of mixtures


	Title	Description	Institutions
D3.3	Measurement of noble liquid response for low-energy recoils	Characterization of NL response to low-energy recoils and design of low-energy calibration systems	10
D3.4	Measurement of noble liquids mixtures properties	Characterization and measurement of properties of NL mixtures	13


WP3.2 Target properties and isotope loading of noble elements (D. Franco & D. Rudik)

Scientific Progress:

D3.4: Publication

•EUV scintillation from xe-doped LAr •P.Agnes et al., X-ArT <u>https://arxiv.org/abs/2410.22863</u>

CN: IHEP, CAS ES: University of Granada FR: APC, LPNHE, Mines Paris IT: GSSI, INFN LNS, Milano, Napoli PT: LIP Coimbra UK: Uni Edinburgh US: Colorado State, LLNL, UC Riverside

WP4.1 Radiopurity and background mitigation (R. Santorelli & P. Scovell)

• Consolidated the scientific programme to 3 Deliverables: radioassay techniques, low-bckgd materials, bckgd evaluation

	Title	Description	Institutions
D4.1	Report on improved radioassay techniques	Demonstration of radioassay techniques at required sensitivity for next generation of rare-event search experiments	8
D4.2	Report on low-background materials	Report on the development of novel materials, material selection, and clean treatment/manufacturing processes	8
D4.3	New tools for background evaluation	Development of new tools for background simulations and measurements of cross-section materials	6

WP4.1 Radiopurity and background mitigation (R. Santorelli & P. Scovell)

Scientific Progress:

D4.1: Radioassay Techniques

- •Recent addition of Underground Labs (Canfranc, Boulby, Modane, Rustrel) •Agreement to coordinate
- •Plans for a virtual workshop

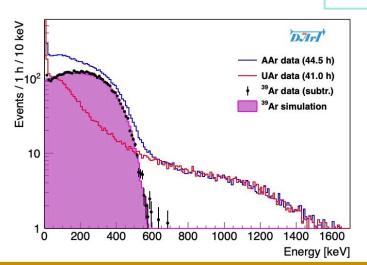
WP4.2 Detector and target procurement/production & purification (M. Caravati & M. Yeh)

• Consolidated the scientific programme to 2 Deliverables: production & purification facilities, radiopurity assessment and verification

	Title	Description	Institutions
D4.4	Mass production facilities	Purification and production plants for liquid targets	8
D4.5	Demonstration of UAr purification technology	Demonstration of improved purification technologies on testbeds	5

WP4.2 Detector and target procurement/production & purification (M. Caravati & M. Yeh)

Scientific Progress:

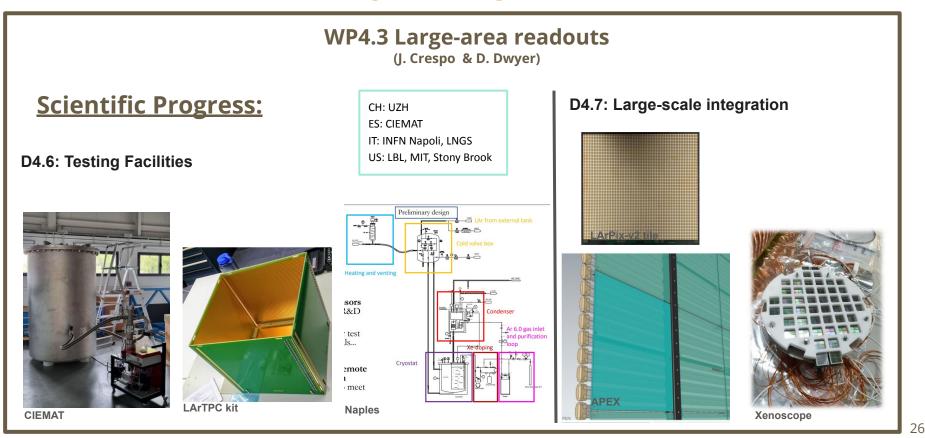

D4.5 Demonstration of UAr purification technology

DArT @ LSC

- Concept validated by measurement of ³⁹Ar spectrum by comparing AAr and UAr with DArT in a test cryostat
- ArDM detection refurbished for single-phase operation
- Full setup for ³⁹Ar ready by January 2025

Single electron

cryogenic setup under advanced testing at INFN Cagliari



CA: SNOLAB DE: Muenster, JGU Mainz ES: CIEMAT IT: GSSI, INFN Cagliari UK: University of Oxford US: BNL, LLNL, UC RIverside

WP4.3 Large-area readouts (J. Crespo & D. Dwyer)

• Consolidated the scientific programme to 2 Deliverables: mid-scale and large-scale facilities for integration tests

	Title	Description	Institutions
D4.6	Medium-scale integrated testing facilities	Development of mid-scale facilities for large-area readout assembly and characterization at cryogenic temperature	6
D4.7	Report on large-area readout	Report on large-scale light and charge readout systems	5

WG A: Common Infrastructure and Facilities

Slower progress here because nominated one co-convener stepped down, the other one is on parental leave and we needed a better picture of the facilities (work undertaken by the Tasks)

We plan to use the Working Group to mitigate the inclusion of groups who cannot commit to Deliverables

Summary of progress

All Tasks have made progress and have planned for scientific exchange activities (workshops, task meetings...)

General Collaboration Meeting to be held at CERN (TBC) on <u>11-13 February 2025</u>

We succeeded into bringing together the different communities, we now need to maintain momentum!

Thank You

D1.1	Pixel readout prototype	Prototype of lower power and lower pixel		Prototype of lower power and lower pixel thresholds to the limit of CMOS capabilities
		thresholds to the limit of CMOS capabilities	T1.1.G1.D1	removed
D1.2	Large-scale pixel readout design	Design of a pixel readout with O(100 million)	T1.1.G2.D1	Design of a pixel readout with O(100 million)
D1.3	Light-sensitive pixel readout design	Design (simulation and prototype) of maximal photocathode coverage and QE in an integrated fC charge and VUV light	T1.1.G3.D1	Design (simulation and prototype) of maximal photocathode coverage and QE in an integrated fC charge and VUV light sensing scheme for pixel TPCs
		sensing scheme for pixel TPCs		removed

	\mathbf{P}		T1.2.G1.D1	Prototype demonstrating particle tracking (2030)
D1.4		Prototypes for light imaging of charge amplification with cameras and SiPMs		removed
				removed
	Report on novel charge amplification devices		T1.2.G2.D1	Report on novel devices to for charge amplification in dual-phase detectors (2027)
				removed
D1.5		Report on novel devices for charge amplification in single- and dual-phase detectors		removed
			T1.2.G2.D3	Report on the feasibility of novel amplification strategies for single- and mixed-phase detectors
			T1.2.G2.D4	Theoretical models of electron transport in LAr/LXe, and simulation models of PMT, SIPM pulse shapes
	Report on large-scale tests for	Report on large-scale tests in single- and	T1.2.G3.D1	Report on LAr / dual phase Ar large scale tests with TPX readout (2030)
D1.6	amplification devices	dual-phase LAr and LXe detectors	T1.2.G3.D2	Report on large scale tests with a single-phase LXe and dual-phase Xe charge-to-light conversion stage (2030)

D2.1	Sensor development for VUV sensitivity	Development and characterizationof organic photosensors, coatings and passivation methods and of SPAD geometry for VUV detection	T2.1.G1.D1 T2.1.G1.D2 T2.1.G1.D3	Characterization of low-noise, high fill-factor organic photosensors Purpose-optimised coatings and passivation strategies for LAr/LXe wavelengths Designs of SPAD geometries optimized for VUV sensitivity
D2.2	Prototype SPAD arrays	Prototypes and characterization of new SPAD arrays for 3D-intergrated FSI and BSI, analog BSI and monolitich arrays	T2.1.G2.D1 T2.1.G2.D2 T2.1.G2.D3	Prototype of 3D integrated FSI-SPAD arrays and characterization Prototype of 3D integrated BSI-SPAD arrays and characterization Prototype of analog BSI-SPAD arrays and characterization
-		Report on the performance of new	T2.1.G2.D4 T2.1.G3.D1	Prototypes of cryogenic monolithic SPAD arrays and characterization PDE vs. λ,T, angle measurement
D2.3	Report on VUV-ontimize	t on ptimize vUV-optimised sensors in term of PDE, noise and application to rare-event seraches	T2.1.G3.D2	Report on sensor noise characterisation
			T2.1.G3.D3	Paper on rare-event search application

D2.4	Report on optimised WLS	Report on optimised WLS (VUV to visible) and	T2.2.G1.D1	Technical report of optimized WLS (2027)
		evaporation systems	T2.2.G1.D2	Construction of a large-area multi-source evaporation system (2027)
D2.5	1) esign report on light collection	Design report on VUV light collection in noble elements and light readout for liquid scintillators	T2.2.G2.D1	Design report of VUV light collectors at cryogenic temperatures (2028)
			T2.2.G2.D2	Design report of light readout for liquid scintillator (2028)
				removed

	liquid scintillators	Lab- and ton-scale demonstrators for hybrid and opaque scintillators, publication on properties and performances and improved microphysics models	T3.1.G1.D1	Demonstration of hybrid scintillator (hLS) performance in lab-scale and ton-scale experiments (2028)
D3.1			T3.1.G1.D2	Demonstration of opaque scintillator (oLS) performance in ton-scale setup (2028)
			T3.1.G1.D3	Publications on properties of novel target media and detector concepts (2027)
			T3.1.G1.D4	Improved microphysics model for organic liquid scintillators (2028)
D3.2	Demonstrators for liquid target	Demonstration of high Gd loading at ton-scale and of high concentration of isotope loading	T3.1.G2.D1	Demonstration of > 0.1% Gadolinium loading in ton-scale setups (2027)
03.2			T3.1.G2.D2	Demonstration of $\beta\beta$ isotope loading in scintillators on several per-cent level (2028)

	noble liquid response for low-energy recoils	Characterization of NL	T3.2.G1.D1	Characterization of NL response to low energy recoils (2028)
				removed
D3.3			T3.2.G1.D2	Design and commissioning of techniques for low-energy calibrations (2029)
				removed
				removed
				removed
	noble liquids mixtures	properties of NL mixtures	T3.2.G2.D1	Characterization of thermodynamics of Xe-doped LAr (2028)
D3.4				removed
			T3.2.G2.D2	Measurement and modeling of doped NL response (2028)

	improved radioassay techniques	techniques at required sensitivity for next generation	T4.1.G1.D1	Demonstration of improved sensitivity for surface contamination, Rn emanation, and bulk contamination assays.
D4.1			T4.1.G1.D2	Report on a comprehensive cross-calibration for low background screening and assay across EU
				removed
		Report on the development of novel materials, material selection, and clean treatment/manufacturing processes	T4.1.G2.D1	Development and demonstration of novel materials for background suppression
D4.2	Report on low-backgro und materials		T4.1.G2.D2	Technical report on surface treatments and clean protocols for low background experiment
04.2				removed
				removed
	New tools for background evaluation	w tools for background simulations and measurements of cross-section	T4.1.G3.D1	Improvement of the Codes for tracking and estimating backgrounds in rare event searches
D4.3			T4.1.G3.D2	Measurement of cross-section for materials relevant to low-background experiments
04.5				removed
				removed 7

	production	Purification and production plants for liquid targets	T4.2.G1.D1	Scale-up Purification and Production facility for (Metal doped & Water based) LS/WC (2027)
D4.4			T4.2.G1.D2	Massive xenon production and purification plant (2027)
				removed
			T4.2.G1.D3	Pilot-scale UAr purification technology development (2027)
	Demonstration of UAr purification technology	Demonstration of improved purification technologies on testbeds		removed
D4.5				removed
			T4.2.G2.D1	Facilities for liquid argon radioactivity, purity, and single electron emission characterization (2027)

	Medium-scale integrated testing facilities	Development of mid-scale facilities for large-area readout assembly and characterization at cryogenic temperature	T4.3.G1.D1	Photodetector facility (2026)
D4.6			T4.3.G1.D2	TPC-testing facility (2026)
			T4.3.G1.D3	Distributed pixel LArTPC systems (2026)
	removed			removed
	Temoveu		T4.3.G2.D4	Scalable readout for large photodetector systems (2029)
		Report on large-scale light and charge readout systems	T4.3.G2.D1	Report on large scale photodetection in a field cage (2026)
D4.7	Report on large-area readout		T4.3.G2.D2	Design of O(10 million) pixel readout (2029)
			T4.3.G2.D3	Report on operation of large fill-factor UV sensors in LXe (2026)