

SCIENCE WEEK TIRANA, 2nd : From the theoretical model to the experimental observation

Ilirjan Margjeka The CMS Experiment & INFN of Bari

- 1 / 1	arg	eka
1.61	ч ₆ ј	CINC

The Large Hadron Collider

▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) ▶ electron → +→ proton/antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

∃ →

Image: A math a math

CMS Collision Events

The Standard Model of Elementary Particles

Standard Model of Elementary Particles

I. Margjeka

PS Modules Tests

October 1st, 2024

∃ →

Possible Analysis research at the CMS Experiment

- \Rightarrow SM based theories:
 - Higgs Physics anb all decay modes of the Higgs boson
 - EM, EWK particle Physics
 - The full range of elementary particle Physics discovered and predicted from the SM (no gravitation related particles)
- \Rightarrow BSM based theories:
 - Every possible deviation of the Higs boson invariant mass (Higgs Singlet Model, 2-Higgs-Doublet model)
 - Minimal Supersymmetric Extansion of the SM (MSSM Theory)
 - Kaluza-Klein and Randall-Sundrum model on the bulk graviton spin-2 and radion spin-0 gravitational particles
 - SUSY particles (charginos, neutralinos, higgsinos, etc ...)
 - Dark matter particles (Z-prime, Monohiggs, dark photons, etcc ...) and long lived / displaced particle
 - $HH(SM) \rightarrow b\bar{b}Z^0Z^0 \rightarrow b\bar{b}4I, \quad I = e^{\pm}, \mu^{\pm}$
 - $X/A(BSM) \rightarrow HH \rightarrow b\bar{b}Z^0Z^0 \rightarrow b\bar{b}4I, \quad I = e^{\pm}, \mu^{\pm}$

How to "observe" particles in a particle detector

- We don't see any of the Physics particles either with our eyes nor with our experiments!
- We measure (detect) them and we recostruct them

\Rightarrow PROCEDURES and METHODS of particle analysis and observation:

- High energy particle collider, Particle Detectors and Trigger (particle counting) system
- From analog signals (differential of potentials and micro-currents) to digital signals (binary code)
- Very fast algorithms to select, to sort and accept/reject events at the spot (Level 1, High Level Trigger)
- Very sophisticated algorithms of Physics objects reconstructions
- Cut based analysis (if(){} else(), for(){}, etj in C++, Python, ...
- Machnine earning techniques and/or neural networks algorithmes for signal to backgrounds discrimination
- Statistical analysis of signal, background and experimental data estimations

⇒ VERY IMPORTANT: Physics motivations (THEORY) !!!

Motivation on the analysis work

$$V = \frac{1}{2}m_{H}^{2}H^{2} + \frac{\lambda_{HHH}vH^{3}}{4} + \frac{1}{4}\lambda_{HHHH}H^{4}, \quad \lambda_{HHH} = \lambda_{HHHH} = \frac{m_{H}^{2}}{2v^{2}} \approx 0.13$$

1) Non-resonant double Higgs $H\!H
ightarrow b ar{b} ZZ(4l, l=e,\mu)$ production

$$\begin{split} \mathcal{L}_{HH} &= \frac{1}{2} \partial_{\mu} \partial^{mu} h - \frac{1}{2} m_{h}^{2} h^{2} - k_{\lambda} \lambda_{SM} v h^{3} \\ &- \frac{m_{t}}{v} \left(v + k_{t} h + \frac{\mathbf{2}}{v} h h \right) \left(\bar{t}_{L} t_{R} + h.c. \right) \\ &+ \frac{\alpha_{s}}{12} \left(\mathbf{c_{1g}} h - \frac{\mathbf{2}\mathbf{2g}}{2v} h h \right) G_{\mu\nu}^{A} G^{A\mu\nu} \end{split}$$

~

2) Resonant $HH \rightarrow b\bar{b}ZZ(4I, I = e, \mu)$, Analysis Note: CMS AN-21-115 Well-motivated signatures according to several scenarios:

Looking for a narrow resonance X with a mass m_X using the invariant mass spectrum m_{HH}

- Kaluza-KleinKK graviton (spin-2) and Radion (spin-0)
- Randall-Sundrum warped extra dimension (up to 3TeV!)

The CMS Dectector

I. Margjeka

PS Modules Tests

October 1st, 2024

Physics object selections

Physics object selections

• Four momentum vector:
$$p^{\mu} = \{E_0, p_x, p_y, p_z\} \Leftrightarrow p^{\mu} = \{p_T, \eta, \theta, \phi\}$$

• Transverse momentum : $p_T = \sqrt{p_x^2 + p_y^2}$

• Pseudorapidity :
$$\eta = -\ln\left[\left(\tan\frac{\theta}{2}\right)\right] = \operatorname{arctanh}\left(\frac{p_z}{\mid p^{\mu}\mid}\right)$$

• Angular separation:
$$\Delta R = \sqrt{\Delta \theta^2 + \Delta \phi^2}$$

• Requirement for the leptons :

	Muon	Electron
	$p_T > 5 \text{ GeV}$	$p_T > 7 \text{ GeV}$
Loose ID	$ \eta < 2.4$	$ \eta < 2.4$
	dxy < 0.5cm, $dz < 1$ cm	dxy < 0.5cm, $dz < 1$ cm
Tight ID	PF muon	MVA (ID + ISO)
ZZ candidate	<i>SIP</i> _{3D} < 4	<i>SIP</i> _{3D} < 4

• Requirements for the additional 2b jets:

	Jets
Tight ID	$p_T > 20 \text{ GeV}$ $\mid \eta \mid < 2.4$
Ŭ	$\Delta R > 0.3$
Categorisation	AK4
b-tagging	DeepCSV

(日)

æ

∃ →

Plots Full RunII ($137 fb^{-1}$): mass Z

October 1st, 2024

3 N 3

Image: A math a math

Analysis strategy

⇒ The same used as the approved non resonant $HH \rightarrow bb4I$ Analysis HIG-20-004 ; • $H \Rightarrow b\bar{b}$:

- We select the two jets with the highest-b tagging score
- $H \Rightarrow ZZ(4l, l = e, \mu)$ (the same as the HZZ4l HIG-19-001): 1)Leptonic Z-boson as lepton pairs:
 - Opposite charge, same flavour $(\mu^+\mu^-, e^-e^+)$ and mass restriction $12 < m_{Z_{ll}} < 120 GeV$
- 2) ZZ- boson pair as Z_1 (on-mass shell) and Z_2 (off-mass shell):
 - *m*_{Z1} > 40 GeV
 - $p_T(l_1) > 20 GeV$ and $p_T(l_2) > 10$ GeV
 - $\Delta R > 0.02$ for 4 leptons
 - QCD supression for lepton pairs with m_{ll} > 4GeV for the opposite-charge lepton pairs
 - $m_{4l} > 70 \, GeV$
 - In case of more than one ZZ candidate \rightarrow those with the highest value of $\sum p_T(l^-l^+)$
- Signal region HH: | mass₄/ 125.09 |< 10 && 2jets

I. Margjeka

Plots Full RunII ($137 fb^{-1}$): mass 4I

13/29

< □ > < /□ >

TMVA using Bosted Decision Tree (BDT)

- $H \rightarrow 4I$ full selection
- $| m_{4l} 125 | < 10 \text{ GeV}$
- at least 2 jets in the event and if more then 2, the those with the highest b-disc. jet value

Rank	Variable	Variable Importance
1	ΔR_{HH}	15.47 %
2	b-disc. jet1	13.19 %
3	$m_{H(ii)}$	12.22 %
4	b-disc. jet2	9.882 %
5	$p_{T(jet_2)}$	9.618 %
6	$p_{T(l_1)}$	9.299 %
7	$p_{T(jet_1)}$	9.102 %
8	$p_{T(b)}$	7.717 %
9	$p_{T(l_3)}$	7.006 %
10	$p_{T(l_4)}$	6.491 %

Upper limits on different hypotheses of k_{λ} Results extracted following the procedure explained here:

https://indico.cern.ch/event/904966/contributions/3832774/attach ments/2023843/3384862/HH combine model 21Apr2018.pdf

Observed (expected) constraints on k_{λ} at 95% CL:

HH→bbZZ→bbZZ(4/)

 $L_{int} = 137 \ fb^{-1}$

CMS Preliminary

 $-9(-10.5) < k_{\lambda} < 14(15.5)$

	UL @95% CL Obs (Exp)
2016	122 (102)
2017	59 (88)
2018	53 (61)
Comb	30 (37)

<ロト < 四ト < 三ト < 三ト

æ

The CMS Dectector

I. Margjeka

PS Modules Tests

October 1st, 2024

16 / 29

æ

Muon system: Resistive Plate Chambers (RPC)

1) Eight Custom ASIC discriminators with eight channels each in the center; 2) Two fast charge pre-amplifiers with four channels (right and left)

I. Margjeka

PS Modules Tests

October 1st, 2024

Pre-amplifiers: hardware and readout

- \Rightarrow Fast timing pre-amplifiers mounted on strips:
 - 8 on low (50kΩ) resistivity graphite region, 8 on high (600kΩ) resistivity graphite region
 - amplification voltage applied 2.5 V (high ampl.)
- Analog signals directly read by CAEN digitizer: direct analysis of pulse shape

The CMS Dectector

I. Margjeka

PS Modules Tests

October 1st, 2024

The CMS Tracker Phase2: Pixel-Strip (PS) modules

Module	PS_40_05_IBA_00001	PS_26_05_IBA_00001	PS_26_05_IBA_00002	PS_26_05_IBA_00003
POH	PSROH40-20100036	PSROH26-20100024	PSROH26-20100026	CMSOH2-BRD00528 (V2)
KOH	lpGBT-v0, (I2C patch done)	lpGBT-v0 (I2C patch included)	lpGBT-v0 (I2C patch not needed !)	lpGBT-v1 (no I2C patch)
POH	PSPOH-301000011	PSPOH-301000012	PSPOH-301000026	PSPOH-301000003
(REMOTE SENSING 1V25)		(REMOTE SENSING)		REMOTE SENSING
EEH.I	PSFEH40L-201000055	PSFEH26L-301000005	PSFEH26L-301000007	PSFEH26L-201000040
1211-2	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1
EEH R	PSFEH40R-201000081	PSFEH26R-201000075	PSFEH26R-201000072	PSFEH26R-201000067
T ETFIC	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1	CIC1, SSA1, MPA1
MaPSA	QPT no 11	QPT no 16	QPT no 37-1	QPT no 20 p 1
PSS SENSOR	HPK VPX33234-042_PSS_MAINB	HPK VPX33234-028_PSS_MAINB	HPK VPX33234-037_PSS_MAINB	HPK VPX33234-031_PSS_MAINB

(ロト * @ ト * 注 ト * 注 ・ つ 9

N /	2000		100
ועו	an	7 IE	ĸа

October 1st, 2024

SSA Noise Values comparisions at HV=400V

Module	PS_40_05_IBA_00001	PS_26_05_IBA_00001	PS_26_05_IBA_00002	PS_26_05_IBA_00003
Mean noise value SSA-R at 400V	4.69±0.32 Vcth	3.997±0.34 Vcth	3.923±0.29 Vcth	None
Mean noise value SSA-L at 400V	left side not working	4.247±1.03 Vcth	4.12±0.54 Vcth	3.832±0.2861 Vcth
Leakage current I _{leak} at 20°C	\sim 4.5 μ A	\sim 7.5 μ A	\sim 3.8 μ A	\sim 1.88 $\mu {\sf A}$
Noise strips \geq 10 Vcth	None	None	None	None

NZ	arg	e	23
 	u g		~

October 1st, 2024

MPA Noise Values comparisions at HV=400V

Module	PS_40_05_IBA_00001	PS_26_05_IBA_00001	PS_26_05_IBA_00002	PS_26_05_IBA_00003
Mean noise value MPA-R at 400V	1.84±0.21 Vcth	2.42±0.24 Vcth	2.45±0.26 Vcth	None
Mean noise value MPA-L at 400V	left side not working	2.35±0.26 Vcth	2.35±0.23 Vcth	2.40±0.26 Vcth
Leakage current I _{leak} at 20°C	\sim 4.5 μ A	\sim 7.5 μ A	\sim 3.8 μA	\sim 1.88 $\mu {\sf A}$
Noise strips \geq 10 Vcth	None	None	None	None

N /1	Dr.	- 0	10
1.01	are	191	Νа

October 1st, 2024

I. Margjeka

The M1 Magnet in the CERN north area

- The box with the modules was positioned in the center of the superconducting M1 magnet
- Helmholtz-type with 1.4 m bore
- 82 cm distance between cryostats for superconductiong coils
- Maximal field at 3 T, perpendicular to the beam direction in H2 line of the CERN-SPS accelerator
- It operates with a DC current up to 4×10^3 A
- Maximal stored energy of 56 MJ

- 1) The ARDUINO for temperature and humidity measurements and monitoring
- 2a) HV power supply for the PS_26_05_IBA_00002 module
- 2b) HV power supply for the PS_16_05_FNL_00001 module
- 3) LV power supply for both modules
- 4) Mini pc for the controll and monitoring of the devices

The SPS beam at the H2/NA64 test beam area

• The particle beam "cannon": Pions at 180 GeV with 4s-5s spills up to 3000 trigger events per spill.

I. Margjeka

PS Modules Tests

October 1st, 2024

PS Modules Tests

- The CMS experiments provides a large range of scientific reasearch opportunities
- It is a team work environment
- All countries, all religions, all people working together
- We stay tunded with the latest ideas
- A great opportunity to grow, specially for the students

JU FALEMINDERIT!

Ι.	M.	arg	ie	ka
		· 0.		

イロト イヨト イヨト イヨト

3