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The Cartan Equivalence Problem

Problem: How can we determine if two metrics describe the same
spacetime, in different coordinate systems?

Cartan: Use the components of the curvature tensor and its
derivatives in a particular frame, utilizing the Lorentz
transformations to define a canonical frame invariantly, set the
curvature tensor of each metric in this canonical form, and
compare the components of them, and the sequences of
transformations which lead to the canonical frames in each case.



Cartan-Karlhede Algorithm

◮ 1. Set differentiation order to q=0.

◮ 2. Calculate derivatives of the Riemann tensor up to qth order.

◮ 3. Fix the canonical frame of the Riemann tensor and derivatives.

◮ 4. Note the number of allowed frame transformations (dimHq) –
the dimension of the linear isotropy group.

◮ 5. Determine the number tq of functionally independent
components among the Riemann tensor and derivatives. (max is the
dimension of the manifold, i.e. 4 in GR – number of coordinates
your metric function has, essentially)

◮ 6. If the isotropy group and number of independent functions are
the same as the previous step, we set p + 1 = q and stop. Else
repeat from step 2.

If any properties of the above are different (between solutions) at
any order, the spacetimes are immediately distinguished from each
other. If all properties are the same, then we can proceed to
determining if coordinate transformations exist between the two
metrics. (The hardest step)



Cartan-Karlhede Algorithm: The point

We use the components of the Riemann tensor and derivatives (the
Cartan scalars) instead of coordinates to compare spacetimes.
Thus we are directly comparing their geometric properties.

In principle, we should be able to use the lists of Cartan scalars of
each metric to determine a coordinate transformation between the
metrics. If two metrics are equivalent, the lists of Cartan scalars
and the relationships amongst them will all be the same, and there
will exist a coordinate transformation between the two sets.



The Newman Penrose Formalism

Karlhede’s modification of Cartan’s equivalence method relies on
transforming the problem onto a frame basis in which the metric
components are constants. One particular way of doing this is via
the Newman Penrose formalism, where the metric has components:

ηab =





0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0



 (1)

The frame consist of two real and two complex vectors, labelled
{ℓa, na,ma, m̄a}, which are all null, and satisfy the following
orthogonality conditions:

−ℓana = mam̄a = 1, (2)

And all other inner products vanish.



The Newman Penrose Formalism
We can now project the curvature tensor, and its derivatives onto
the frame, e.g.

R1212 = Rabcdℓ
anbℓcnd ,

R1212;4 = Rabcd ;eℓ
anbℓcndm̄e ,

(3)

We decompose the Riemann tensor into the Weyl tensor, Ricci
tensor, and Ricci scalar, and define the algebraically independent
components with the following labels:

Ψ0 = C1313, Ψ1 = C1213,

Ψ2 = C1342, Ψ3 = C2124,

Ψ4 = C2424.

(4)

Φ00 =
1

2
Sabℓ

aℓb, Φ01 =
1

2
Sabℓ

amb, . . .

Φ11 =
1

4
Sab(ℓ

anb +mam̄b), . . .

Φ22 =
1

2
Sabn

anb, . . .

(5)



The Newman Penrose Formalism

For convenience, we define the directional derivatives of the frame:

D ≡ ℓa∇a,

∆ ≡ na∇a,

δ ≡ ma∇a,

δ̄ ≡ m̄a∇a.

(6)



The Newman Penrose Formalism

We define the connection coefficients of the frame, here referred to
as spin coefficients:

−κ ≡ maℓbℓa;b, (7a)

−ρ ≡ m̄aℓbma;b, (7b)

−σ ≡ mambℓa;b, (7c)

−τ ≡ maℓbℓa;b, (7d)

ν ≡ m̄anbna;b, (7e)

µ ≡ m̄ambna;b, (7f)

λ ≡ m̄am̄bna;b, (7g)

π ≡ m̄aℓbna;b, (7h)

− ≡ 1

2
(maℓbm̄a;b − naℓbℓa;b),

(7i)

−γ ≡ 1

2
(ℓanbna;b −manbm̄a;b),

(7j)

−β ≡ 1

2
(nambℓa;b − m̄ambma;b),

(7k)

α ≡ 1

2
(ℓam̄bna;b −mam̄bm̄a;b).

(7l)



The Newman Penrose Formalism: Lorentz Transformations

The usefulness of the Newman Penrose formalism for the CK
algorithm is obvious after we specify the Lorentz transformations
of the frame:
Boosts and spins: λb, θ ∈ R

ℓa → λbℓ
a, na → na

λb
,

ma → e iθma, m̄a → e−iθm̄a.

(8)

Null rotation about ℓ: E ,B ∈ C

ℓa → ℓa,

na → na + Ema + Ē m̄a + EĒℓa,

ma → ma + Eℓa,

m̄a → m̄a + Ēℓa.

(9)

For null rotations about n, swap E → B̄ and ℓ ↔ n.



A Simple Example

Given the Schwarzschild solution,

ds2 = −

1− 2M

r


dt2 +


1− 2M

r

−1

dr2 + r2dΩ2, (10)

we wish to utilize the Cartan Karlhede algorithm to determine the
Cartan scalars for a canonical frame for this solution.

Choosing an initial null frame to begin with, we can choose any
basis, and orthogonalize it via the Gram-Schmidt process, or if the
metric is in a nice enough form, we can determine and write down
immediately the orthonormal frame. Then we construct the null
vectors via simple combinations of the orthonormal frame.



Schwarzschild Initial Null Frame

ℓµ =
1√
2







1− 2M

r
,

1
1− 2M

r

, 0, 0




 , (11a)

nµ =
1√
2







1− 2M

r
,− 1

1− 2M
r

, 0, 0




 , (11b)

mµ =
1√
2
{0, 0, r , ir sin(θ)} , (11c)

m̄µ =
1√
2
{0, 0, r ,−ir sin(θ)} . (11d)



Schwarzschild Example

Given the initial frame, we can choose the canonical form
ourselves. The only stipulation is that the frame of some other
metric we are comparing to should also be transformed to this
canonical frame via Lorentz transformations.

Since we know that the Schwarzschild solutions are Petrov Type D,
we know there exists a frame such that the Weyl NP scalars have
the following form:

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0,

Ψ2 ∕= 0.
(12)

So at zeroth order, we can demand that our frames must be put in
a form with the above Weyl scalar properties. This choice uses up
both of our null rotations.



Schwarzschild Example

For our typical choice of initial null frame for this Schwarzschild
metric, the zeroth order tensor is already in this canonical form.

Now we need to determine the Lorentz transformations which keep
the curvature tensor at zeroth order invariant. Since the scalar Ψ2

is defined via the frame:

Ψ2 = Cabcdℓ
ambm̄cnd , (13)

under a boost transformation, ℓa → λbℓ
a, na → na/λb:

Ψ′
2 = Cabcdλbℓ

ambm̄cnd/λb = Ψ2 = −M

r3
(14)

Clearly the boost parameters cancel, thus Ψ2 is invariant under a
boost transformation. Similarly, it is also invariant under a spin
transformation. Note: we can now replace the coordinate r with
the Cartan scalar Ψ2 in any coordinated expression!



Schwarzschild Example: Zeroth Order

At zeroth order, we can then conclude for the Schwarzschild
metric, in our frame that we defined previously, we have fixed the
null rotations by demanding that the frame is in its Petrov Type D
form. The Algorithm at zeroth order thus concludes with the
following properties:

◮ t0 = 1

◮ dimH0 = 2 (spins and boosts)

◮ C0 = {Ψ2}
We now move to first order, taking a derivative of the curvature
tensor...



Schwarzschild Example: First Order

We find that at first order, the curvature tensor only contains
terms proportional to the following:

DΨ2,∆Ψ2, ρΨ2, µΨ2. (15)

To fix the frame at this order, let us demand that the following
relationship is satisfied among the curvature tensor components:

C1342;1 = DΨ2 = −∆Ψ2 = −C1342;2, (16)

Since both are affected by a boost transformation, we can choose
the boost that forces the frame to satisfy this relationship. Thus
we have removed the boost transformation at first order. Due to
the spherical symmetry, there is no way to remove the spin
freedom, so we choose to arbitrarily set θ = 0, as it makes no
changes anywhere. All Lorentz freedom is now gone.



Schwarzschild Example: First Order

In coordinates, the Cartan scalar at first order can be written in
terms of the Cartan scalar at zeroth order:

C1212;1 =
6M

√
r − 2M√
2r9/2

=


Ψ2

4

M

1/3
1

2
+Ψ2

1/3M2/3 (17)

Notice how we have replaced the coordinate with the Cartan scalar.
It is somewhat nice that we can do it in this case, its not always
possible to solve the system of Cartan scalars for the coordinates.

The fact we still see the M inside the Cartan scalar after
eliminating all coordinates means that M is an intrinsic feature of
the Schwarzschild geometry, and two Schwarzschild solutions with
different values of M are not equivalent!



Schwarzschild Example: First Order

Incidentally, our choice of boost also makes the spin coefficients
ρ = µ, so that now there is only a single algebraically independent
component of the curvature tensor’s first derivative. Additionally,
the Ricci and Bianchi identities simplify to give us:

C1342;1 = 3ρΨ2. (18)

All other nonzero components of the curvature tensor are a
constant multiple of this function.



Schwarzschild Example: Conclusion

We end at first order, as no new functionally independent
components have arisen, thus the algorithm concludes with:

◮ t1 = 1,

◮ dimH1 = 0,

◮ C1 = {Ψ2}.

The second order algorithm produces:

◮ t2 = 1,

◮ dimH2 = 0,

◮ C2 = {Ψ2}.
Thus we can now stop, since the isotropy is spent, and we only
have a single independent function.



Spherically Symmetric Perfect Fluids

We examined spherically symmetric metrics of the form:

ds2 = −A(t, r)2dt2 + B(t, r)2dr2 + R(t, r)2dΩ2, (19)

with a perfect fluid source:

Tab = (ρ̃(t, r) + p(t, r))uaub + pgab, (20)

and the perfect fluid is barotropic, with linear equation of state:

p = ωρ, (21)

with 0 < ω ≤ 4/3. We wish to model the collapse of a cloud of
matter to a black hole.



Spherically Symmetric Perfect Fluids: Cartan Scalars
We applied the Cartan-Karlhede algorithm on the above spacetime
to determine the Cartan scalars, which can be written as the NP
functions, and in terms of fluid functions and metric functions:

Φ00 = Φ22 = 2Φ11 = κ(ρ̃+ p), (22a)

Ψ2 =
κρ̃

6
− M

R3
, (22b)

ρ =
−AR ′ + BṘ√

2ABR
, (22c)

µ = −AR ′ + BṘ√
2ABR

, (22d)

(22e)

The two spin coefficients ρ, µ are ‘extended’ Cartan scalars – i.e.
scalars constructed out of Cartan scalars. Here, Φ22 and Ψ2 are
the functionally independent Cartan scalars. They can in principle
replace the t and r coordinates.



Numerical Solutions

The field equations can be written as a set of first order coupled
PDEs, for the functions A,B ,R ,M, subject to a constraint

Ṙ2

A2
=

2M

R
+

R ′2

B2
− 1, (23a)

M ′ =
κ

2
ρR2R ′, (23b)

Ṁ = −κ

2
pR2Ṙ , (23c)

B(t +∆t, r) = R ′B0 exp


−
 t+∆t

t

A′

A

Ṙ

R ′ dt


, (23d)

A′

A
= − p′

ρ+ p
. (23e)



Numerical Solutions

The last equation is a conservation equation, and the only way to
determine A. There is no dynamical equation for A. B0(r) is an
arbitrary function, and the system is subject to boundary
conditions:

R(t, 0) = 0, M(t, 0) = 0, R ′(t, 0) = 1, Ṙ(t, 0) = 0,

p(t, rs) = 0, A(t, rs) = 1,
(24)

the initial density profile and areal radius:

ρ̃(0, r) = 10 exp(−4r2), R(0, r) = r , (25)

and the arbitrary function:

B0(r) = 1. (26)

The dynamical spacetime is matched to an exterior Schwarzschild
solution at r = rs .



The Basic Numerical Method

We wrote a C++ code to blast through the following numerical
procedure:

1. In the integrated B(t, r) equation,replace the integral with a trapezoidal integration over the time interval
[t, t + ∆t].

2. From Ṙi and Ṁi , integrate forward Ri and Mi to R
p
i+1,M

p
i+1 using an Euler step, these are predicted

values. Additionally, compute and store the numerical derivatives, R
′p
i+1,M

′p
i+1, using a fourth order finite

difference method.

3. From R
′p
i+1,M

′p
i+1, compute ρ

p
i+1, p

p
i+1. Also compute and store p′i+1.

4. From p
′p
i+1, ρ

p
i+1, p

p
i+1, solve the conservation equation for A

p
i+1, using a Runge-Kutta 4 step method,

with boundary condition A(rs ) = As .

5. From the Friedmann constraint, solve for Ṙ
p
i+1 using a bisection method.

6. If there are issues with bisection near r = 0, fill in the erratic data using a rational polynomial interpolation
method, using the boundary condition Ṙp(t, 0) = 0 (Turned off in all results below – experimental feature).

7. Compute Ṁ
p
i+1.

8. Use Ṁ
p
i+1, Ṙ

p
i+1 and Ṙi , Ṁi to compute a corrected value for Ri+1,Mi+1 using the trapezoidal method.

9. With Ṙ, Ṁ updated, repeat from step 2.



Numerical Results



Applications of the Invariant Classification

In GR:

◮ Identifying geometric horizons (also apparent horizons,
ergosurfaces).

◮ Locating/tracking shell crossing singularities and shell
focussing singularities. These are necessary for cosmological
models like in Szekeres, which generically form shell crossings.

◮ Numerical collapse and error tracking

◮ Photon surface definition and identification

In Brans Dicke:

◮ Properties of horizons in spherically symmetric vacuum
spacetimes

◮ Locally naked singularities



Future Work

◮ Further development of the collapse problem to involve more
sophisticated numerical methods.

◮ Photon Sphere Dynamics

◮ Applications of Cartan Scalars to Numerical Cosmology
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