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A History of Physical Theories Self Graitation

G. Noseworthy

» It has been a long-term goal
to couple gravity with
quantum mechanics.

» Modern physical theories
G
Newtonian 'Non-relativistic

aim to unify three concepts:
- Relativity (¢), Quantum

Theory (%), and Gravity

(6).

i » With no Theory of
Quantum .
Mechni Everything found, we can
/¢~ special Quantum
Relatiy N look towards the other
unknown: Non-Relativistic

Quantum Gravity.

ravity

General Theory of
Relativity v

Figure: The cube of physical
theories, with the Theory of
Everything in blue and
Non-Relativistic Quantum
Gravity in red.
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The Newton-Schrodinger Equation Gl

G. Noseworthy

1. Originally defined by Didsi, then Penrose. The
Newton-Schrodinger System gives us an approach to
Non-Relativistic Quantum Gravity.

2. Topic of 1 master’s thesis, 2 PhD theses, and numerous
papers in multiple sub-fields.

3. Defined by 2 equations: The Time-Dependent
Schrodinger equation with gravitational potential,

2
/ha—w f — V2V + mov
ot " 2m

and the Poisson equation

V20 = 4rGm|V|?




Our Goal

Previous studies focused on
simple wavefunctions in
spherical symmetry. So, we
will seek to answer 3 new
questions:

1. How does the NS System
behave in other domains,
like a circle?

2. How does the NS System
behave with multi-peaked
initial conditions?

3. How do test particles
behave in the NS
System?

Quantum
Self-Gravitation

G. Noseworthy

NS on a Circle

Figure: A two-peaked Gaussian
initial wavefunction on a circle.
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The NS Equations in Dimensionless Coordinates —|uasss

G. Noseworthy

1. Firstly, let us rescale the system using three
fundamental constants:

K2 B3
Ins = e mys =m,  tys = peCyer]

2. Final NS System in dimensionless coordinates:

9%~ Loy ow, Ve - N5
ot 2

3. Our initial value problem: Constants A, B, momentum
pi, initial angle 6;, and initial width o;

e—A(" 90) Tipof— 8(9 91) Tipi6

w(0,0) =




The System on a Circle Self Graitation

G. Noseworthy

1. Circular boundary conditions:

V(t,0) = V(t,2m)
®(t,0) = d(t,2m)

wiN)_ W] yr2g

2. NS System through V becomes
one-dimensional:

0P 1 d?
e
"ot T 2ae2” T
d2
2 _
VP = 250

Figure: Positioning of 3
edge points on the
circle.

. Four initial conditions: Single
peak, double peak with equal
spacing, double peak with unequal
spacing, double peak with
different sizes.
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Solving for Gravitational Potential Self-Gravitation

G. Noseworthy

Multiple approaches exist:
1. In general: Use iterative methods like the Conjugate
Gradient or UMFPACK matrix equation solvers.
(i) Discretize the derivative:
2O i — 20 + b4

a6z (A6)?

(ii) Rewrite our equation:

Sy —20; + ;4

(00)2 = [V?

(iii) Represent this as an M x M tri-diagonal matrix A.
(iv) Implement Boundary conditions: The corners of A must
also be ®/(Af)? for the first and last points to interact.
(v) Solve the linear equation AP = |W|2.
2. Alternatively, use a spectral method (The Fourier

Transform).
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The Crank-Nicolson Method Numerically seincrukter

G. Noseworthy

» For time-evoltion we use the Crank-Nicolson Method: A
normalization-preserving multi-step model.

» The time derivative is simple to modify:
o Wit _yn
ot At
» For space derivatives, each piece of the equation:

82\"’ 1 n+1 n+1 n+1
962 ~ 2(00)? <[W'+1 At

+ [V, —2v]  + \U?H])

ov o1
8(9 A9 ([wli_ll

OV = % (with + vy

Wi+ [V - v)
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TeSt Pa rthleS Self-Gravitation

G. Noseworthy

» Finally, how do test particles move within the system,
assuming they don't impact the system itself?

» Define the position of a test particle as X.
» Write a formula for its acceleration:
d?X Xt _oxi 4 xi—1

P> Rewrite to solve iteratively:

2
Xn+l —2X" _ Xn—l . &vq)n
my
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Example Single Peak Initial Conditions Self-Gravitation
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Figure: Amplitude of the evolution of a single peak Gaussian
wavefunction on the circle.
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Figure: Amplitude of the evolution of an equally spaced double
Gaussian wavefunction on the circle.
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Figure: Movement of 2 test particles on the equally spaced double
Gaussian located at [27/3,7/2] with mass ratio 1.
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Figure: Movement of 2 test particles on the equally spaced double
Gaussian located at [27/3, 7/2] with mass ratio 1.
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Figure: Amplitude of the evolution of unequally spaced spaced
double Gaussian wavefunction on the circle.




Unequal Spacing 6y = &, 6, = *4F S

Self-Gravitation
3
G. Noseworthy
[Wix, t)]?
— 6p=2n/3
Gy=n Background
251
204 Defining Our Problem
Numerical Approaches
g
L 15 A NS on a Circle
£ s
=
10
5 P
0 T T T
0 2 n 3ny2
Position (6)

Figure: Movement of 2 test particles on unequally spaced double
Gaussian located at [27/3, 7/2] with mass ratio 1.
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Summary

» The Newton-Schrodinger equation provides an
interesting model.

» By using this model, we can estimate how a wave
behaves under its own gravity.
> What we see:
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Summary

» The Newton-Schrodinger equation provides an
interesting model.

» By using this model, we can estimate how a wave
behaves under its own gravity.

» What we see:

1.
2.

With 2 equally sized peaks: They bounce in place.
With 2 unequally spaced peaks: They merge together,
producing successive peaks.

Test particles move towards the closest gravitational
point, unless both directions are equally as attractive, in
which they are stationary.
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» The Newton-Schrodinger equation provides an
interesting model.

» By using this model, we can estimate how a wave
behaves under its own gravity.
> What we see:

1. With 2 equally sized peaks: They bounce in place.

2. With 2 unequally spaced peaks: They merge together,
producing successive peaks.

3. Test particles move towards the closest gravitational
point, unless both directions are equally as attractive, in
which they are stationary.

» Future work: More complicated domains, such as
non-symmetric spherical domains, or trying
non-Gaussian initial wavefunctions.
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Summary

>

The Newton-Schrodinger equation provides an
interesting model.

By using this model, we can estimate how a wave
behaves under its own gravity.
What we see:

1. With 2 equally sized peaks: They bounce in place.

2. With 2 unequally spaced peaks: They merge together,
producing successive peaks.

3. Test particles move towards the closest gravitational
point, unless both directions are equally as attractive, in
which they are stationary.

Future work: More complicated domains, such as
non-symmetric spherical domains, or trying
non-Gaussian initial wavefunctions.

Thanks for listening!
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