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NULL GEODESICS IN THE SCHWARZSCHILD SPACETIME:
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A.B. Joshi, D.Dey, et al., Phys. Rev. D 102, no.2, 024022 (2020).
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SHADOW OF SCHWARZSCHILD BLACK HOLE:

A.B. Joshi, D.Dey, et al., Phys. Rev. D 102, no.2, 024022 (2020).
D.Dey, R.Shaikh, et al., Phys. Rev. D 103, no.2, 024015 (2021).
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SHADOW OF M87 GALAXY CENTER:
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SHADOW OF SGR-A*:
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PHOTON SPHERE RADIUS IN A SPHERICALLY SYMMETRIC STATIC SPACETIME:

The line element of a spherically symmetric, static spacetime can be written as,

dS2 = −A(r )dt2 + B(r )dr2 + r2dω2 , (1)

where dω2 = dθ2 + sin2 θ dϕ2.

For null geodesics, we can write,

−
e2

A(r )
+

l2

r2
+ B(r )ṙ2 = 0 , (2)

which implies,
Veff (r ) + A(r )B(r )ṙ2 = e2 , (3)

where Veff (r ) = l2 A(r )
r2 .

If there exists a photon sphere at a particular radius rph then

Veff (rph) = e2,V ′
eff (rph) = 0, and V ′′

eff (rph) < 0,

which implies:

rph =
2A(rph)
A′(rph)

, (4)

If the spacetime mentioned in Eq. (1) does not allow any photon sphere then one would
not find any real, positive solution of Eq. (4) for rph.
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where Veff (r ) = l2 A(r )
r2 .

If there exists a photon sphere at a particular radius rph then

Veff (rph) = e2,V ′
eff (rph) = 0, and V ′′

eff (rph) < 0,

which implies:

rph =
2A(rph)
A′(rph)

, (4)

If the spacetime mentioned in Eq. (1) does not allow any photon sphere then one would
not find any real, positive solution of Eq. (4) for rph.

June 18, 2024 9 / 29



OUTLINE

1 SHADOW AND PHOTON RINGS

2 STANDARD PROCEDURE OF DETERMINING PHOTON SPHERE RADIUS

3 COORDINATE INDEPENDENT DEFINITION OF PHOTON SURFACES

4 INVARIANT DEFINITION OF PHOTON SURFACES IN SPIN FRAME

5 PHOTON SURFACES IN TYPE-D SOLUTIONS WITH SO(3) × R SYMMETRY

6 PHOTON SURFACE DYNAMICS IN COLLAPSING SPHERICALLY SYMMETRIC COMPACT OBJECTS

7 CONCLUSION

June 18, 2024 10 / 29



PHOTON RING AND THE DEFINITION OF PHOTON SURFACE:

Definition of Photon surface: A photon surface S in a spacetime manifold (M, gαβ ) is an
immersed, non-spacelike hypersurface of (M, gαβ ): for every point p ∈ S and every null vector
lµ ∈ TpS, there exists a null geodesic xα(λ) : (−ϵ, ϵ) → M of (M, gαβ ) such that
ẋα|λ=0 = lα, xα(λ) ⊂ S. (C. M. Claudel, K. S. Virbhadra and G. F. R. Ellis, J. Math. Phys. 42, 818-838 (2001).)

A photon surface with SO(3) × R symmetry is known as the photon sphere.
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CONDITIONS FOR PHOTON SURFACE:

D.Dey, A.A.Coley and N.T.Layden, Phys. Rev. D 109, no.6, 064021 (2024).
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CONDITIONS FOR PHOTON SURFACE:

Based on the definition of a photon surface given above, one can show the following conditions
are equivalent (C. M. Claudel, K. S. Virbhadra and G. F. R. Ellis, J. Math. Phys. 42, 818-838 (2001)):

1 the non-spacelike surface S is a photon surface;

2 Kµν lµlν = 0 ∀ Null lµ ∈ TpS ∀p ∈ S, where the deformation tensor Kµν = ∇µnν is defined
on the hypersurface S where nµ is the normal to S at point p. The spacelike normal nµ to
Tp(S): nµ =

(
N Mµ + 1

2N M
µ)

, and it is orthogonal to lµ and pµ, where the null vectors

lα, pα,Mα, and M
α

together form a null frame.

3 σµν = 0, where the σµν is the traceless part of Kµν ;

4 every affine null geodesic of (S, hµν ) is an affine null geodesic of (M, gαβ ), where the hµν

is the induced metric on the photon surface S.

The above conditions are true for all smooth generic spacetime manifolds without any symmetry.
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INVARIANT DEFINITION OF A NULL FRAME:

In the above definition, photon surfaces are defined covariantly in a null frame
(lα, pα,Mα, M̄α) which is not in general defined invariantly.

By using Cartan-Karlhede (CK) algorithm (A. Karlhede, Gen Relat. Gravit. 12, 693−707
(1980)), one can invariantly define a null frame.

CK algorithm employs the algebraic type and symmetry of a solution to fix a null frame
invariantly.

The initial step involves identifying a null frame in which the Riemann tensor and its
derivatives take their canonical form. We refer to a null frame that fulfills this condition as a
canonical frame. As an example, for a Petrov-type D solution, in a canonical null frame
(kα

+ , kα
−,m

α,mα), the only non-zero component of Weyl tensor (Cµναβ ) is ψ2, where

ψ2 = Cµναβkµ
+ mνmαkβ

− ̸= 0,

and the other components

ψ0 = Cµναβkµ
+ mνkα

+ mβ = 0,

ψ1 = Cµναβkµ
+ kν

−kα
+ mβ = 0,

ψ3 = Cµναβkµ
+ kν

−mαkβ
− = 0,

ψ4 = Cµναβmµkν
−mαkβ

− = 0.
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INVARIANT DEFINITION OF A NULL FRAME:

After defining the canonical null frame, depending upon the symmetry of the given solution,
the CK algorithm invariantly fixes the frame further preserving the canonical form of the
Riemann tensor and its derivatives (for the above example: type-D canonical form of the
Weyl tensor and its derivatives).

For a spherically symmetric Petrov type-D solution, it can be shown that a null frame can
be invariantly defined up to the spatial spin. For type-D non-spherical solutions, one has to
find an invariant way to fix the frame completely by fixing the spatial spin.

Cartan scalars are the projection of the Riemann tensor and the finite number of its
derivatives on an invariantly defined null frame. Using the Cartan scalars, one can
completely describe the local geometry of a spacetime manifold.

Since the definition of photon surface given by C.M. Claudel, et al., is local, a photon
surface must be invariantly defined in terms of the Cartan scalars.
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PHOTON SURFACE DEFINITION IN TERMS OF CARTAN SCALARS:

In the non-canonical frame (lα, pα,Mα, M̄α) where lα ∈ Tp(S), the photon surface
condition Kµν lµlν = 0 can be written in terms of the spin coefficients corresponding to that
frame:

κ̃ = κ̃ = 0 ,

ϵ̃ + ϵ̃ = 0. (5)

The above condition is true on a photon surface. However, since the null frame
(lα, pα,Mα, M̄α) is not invariantly defined, the photon surface condition is also not defined
invariantly.

Therefore, our primary task is to find a Lorentz transformation that transforms the null
frame (lα, pα,Mα, M̄α) to an invariant null frame (kα

+ , kα
−,m

α,mα) and investigate how the
above condition changes under the Lorentz transformation.
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PHOTON SURFACE DEFINITION IN TERMS OF CARTAN SCALARS:

Using the general Lorentz transformation which relates the null frame (lα, pα,Mα, M̄α) to
the invariant frame (kα

+ , kα
−,m

α,mα), one can write down the photon surface condition in
terms of spin coefficients corresponding to that invariant frame (D.Dey, A.A.Coley and N.T.Layden,

Phys. Rev. D 109, no.6, 064021 (2024).):

where A is the real boost parameter, E and B are complex null rotation parameters, and
the θ is the real spin parameter and all are functions of all of the spacetime coordinates in
general.

It should be noted that the above invariant photon surface condition is true for all Petrov
type-D solutions and independent of symmetry.

Now, we can use the above equation to redefine the photon surface condition using Cartan
scalars. The above condition of the photon surface can be written concisely as
f (S) = f (S) = 0, where f is the function of a set of spin coefficients (corresponding to the
invariant frame) represented by S.
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the θ is the real spin parameter and all are functions of all of the spacetime coordinates in
general.

It should be noted that the above invariant photon surface condition is true for all Petrov
type-D solutions and independent of symmetry.

Now, we can use the above equation to redefine the photon surface condition using Cartan
scalars. The above condition of the photon surface can be written concisely as
f (S) = f (S) = 0, where f is the function of a set of spin coefficients (corresponding to the
invariant frame) represented by S.
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PHOTON SURFACE DEFINITION IN TERMS OF CARTAN SCALARS:

Since the condition f (S) = f (S) = 0 is always true on the photon surface, we can define the
normal nµ at any point on the surface as:

nα = ∇αf (S)|f (S)=0 = ∇αf (S)|f (S)=0. (6)

Using the above expression of normal and the fact that it is orthogonal to the null vector
lα ∈ Tp(S), i.e., lαnα = 0, we can write down the photon surface condition in the following
way:

Since the above scalar equation consists of frame derivatives of spin coefficients, it can
provide us with the photon surface condition in terms of Cartan scalars defined in the
invariant frame (kα

+ , kα
−,m

α,mα).
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PHOTON SURFACE CONDITION FOR SPHERICALLY SYMMETRIC STATIC PETROV TYPE-D SOLUTIONS:

For SO(3) × R symmetric Pertrov type-D solutions, the photon surface condition simplifies
to:

ρ + 2ϵ = 0 .

The corresponding photon surface condition in terms of frame derivatives of spin
coefficients can be derived as (D.Dey, A.A.Coley, and N.T.Layden, Phys. Rev. D 109, no.6, 064021 (2024).):

ϕ00 − 8ϵ2 − ψ2 −
R
12

= 0 ,

which for vacuum Schwarzschild spacetime becomes:

ψ2 = −8ϵ2 (7)
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PHOTON SURFACE CONDITION FOR SPHERICALLY SYMMETRIC STATIC PETROV TYPE-D SOLUTIONS:

For the following spherically symmetric and static spacetime:

dS2 = −A(r )dt2 + B(r )dr2 + r2dω2 ,

using the CK algorithm, it can be shown that the complete set of algebraically independent
Cartan scalars is: ψ2, ϕ00, ϕ11,R, ϵ, ρ, and their frame derivatives.

Hence, the condition for the photon surface i.e., ϕ00 − 8ϵ2 − ψ2 − R
12 = 0 represents a

specific relation among the Cartan scalars defined in the invariant null frame, and this
relation holds exclusively on the photon surface.

Using the invariant condition of photon surfaces and the expressions of ψ2,R, ϕ00, we get:

A′(−rA′ + 2A(r ))
4rA(r )2B(r )

∣∣∣
r=rPh

= 0 =⇒ rPh =
2A(r )
A′(r )

∣∣∣
r=rPh

, (8)

where rPh is the radius of photon sphere.

We can determine the radius of the photon surface, if it exists in a given spacetime
manifold, by solving the aforementioned algebraic equation for rPh. For Schwarzschild
spacetime, the solution of the above equation is rPh = 3M, where M is the Schwarzschild
mass.
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PHOTON SURFACE DYNAMICS IN A SPHERICALLY SYMMETRIC COLLAPSING DUST CLOUD:

A collapsing spherically symmetric dust ball can be modeled by Limetre-Tolman-Bondi
(LTB) spacetime:

dS2 = −dt2 +
R′2(t , r )
1 + f (r )

dr2 + R2(t , r ) dω2 (9)

where R(t , r ) is the physical radius and f (r ) is the velocity function.

For marginally bound scenario (i.e., f (r ) = 0), the photon surface condition implies the
following condition:

RṘ3Ṙ′ − RR′R̈ − R′
(

Ṙ2 − 1
)2

= 0.
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Ṙ2 − 1
)2

= 0.

June 18, 2024 24 / 29



PHOTON SURFACE DYNAMICS IN A SPHERICALLY SYMMETRIC COLLAPSING DUST CLOUD:
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PHOTON SURFACE DYNAMICS IN A SPHERICALLY SYMMETRIC IMPLODING NULL DUST:
The Vaidya spacetime can model collapsing null dust. The line element of the imploding Vaidya
spacetime can be written as:

dS2 = −
(

1 −
2M(v )

r

)
dv2 + 2dr dv + r2dω2 , (10)

where v is a null coordinate defined as: v = t + r + 2M(v ) log
(

r
2M(v ) − 1

)
and the ADM mass

M(v ) is a positive definite function of v .
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CONCLUSION:

We invariantly define photon surfaces within a spin frame corresponding to the type-D
solutions.

We verify our results considering SO(3) × R symmetry with the existing coordinate
dependent results.

Our study of photon surface dynamics in an inhomogeneous dust ball and imploding
spherically symmetric null dust reveals parameter spaces where photon surfaces exhibit
expansion, originating from the central singularity. Consequently, null geodesics confined
to these surfaces can initiate their trajectory in close proximity to the central singularity
region and, therefore, these geodesics have the potential to carry information about any
new physics that may emerge in the ultra-high density regions near the singularity.

In the future, we aim to explore the photon surface dynamics in non-spherical type-D
solutions, e.g., Kerr, Szekeres, etc.

In addition to studying photon surfaces in type-D solutions, we are also interested in
examining the properties of photon surfaces in colliding black hole scenarios. This
research could have significant implications both theoretically and observationally.
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