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Background Of Study

¢ Black holes are celestial objects
resulting from the gravitational
collapse of massive stars.

¢ The challenge in defining a black
hole revolves around understanding
the boundary between the region
occupied by the black hole and the
surrounding Universe, a boundary
known as the event horizon.

¢ A crucial concept in the study of
black holes is that of Marginally
Outer Trapped Surfaces (MOTYS).
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Congruence of null geodesics

* A trapped surface is a two-dimensional surface in spacetime
where the congruence of null geodesics emanating
orthogonally from the surface converges (has negative
expansion) 1n both the inward and outward directions.

* B(H) <0 and 9(3) <0
* Trapped surfaces imply the existence of singularities.




Marginally

A MOTS is a marginally trapped

Outer surface where the outward null
expansion is zero 0, = 0.
Trapped * The Apparent Horizon is a MOTS
that bounds the trapped region and
SurfaCeS is contained inside the event

(M OTS) horizon of a black hole.




The Stability Operator

The cross-sectional area enclosing
a congruence of geodesics.

ﬁ
Expansion Rotation Shear
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The Stability Operator L for static axisymmetric solutions is
defined by:

1
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The Eigenvalue Problem:

Ly = Ay
The smallest_principal_eigenvalue_holds important
information on MOTS stability.

* A positive principal eigenvalue A > 0: indicate
stability, suggesting the MOTS bounds a tra

* A negative principal eigenvalue A < 0: indi
instability, suggesting the MOTS migh
trapped region.




The Schwarzschild solution

2M 2M
ds?= — (1_T )dt? + ( 1—7)‘1dr2 + r(d6? + sin“6 d¢?)
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he Schwarzschild solution event horizon
characterizes the geometry of e ~<_
spacetime around a non-rotating, " SN
spherically symmetric mass. /' \\

Predicts the existence of a singularity Schwarzschild

- radius i lari
at the center of the mass. ‘\\ R, SN F,
This solution depicts a spacetime that LN i
asymptotically approaches flat i i
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spacetime at large distances from the
central mass



Weyl Solutions

A static axisymmetric metric can be written in the general form:
dSz _eU dtZ + e—2U+2V(dZ 2+dp2) + e—ZU pZd(I)Z

* For a metric to accurately represent the gravitational field in a
vacuum, the function U(p, z) must satisfy the Laplace equation:

2y 22U, 19U 97U
v<U 307 +pap -7z -0
and 2= pl(52)2=(5,)4, 5 =205

EY; dp 9Z
* This allows a (Partlal) superposmon of solutions.




“I Weyl-Distorted Schwarzschild Metric

* The Metric is Given By:

2m 2
dSZ _eZU (1_ ) + e—2U+2V(

ot r?de?) + e 2V r2sin?0d¢?
T r

* If we demand a Schwarzschild singularity, then the metric at the event horizon r=2m:

ds?= 4m?e~?Y(e*V ~ 4% dQ ? + sin?6 dd?)

* The potential U on the horizon is expressed as a series expansion in terms of Legendre
polynomials P;(cos 0) :

U(2m,0) = Y2 a;P(cos0) and V(2m,0) = 2U(2m, 0) — 2u,




U(2m, 0) = U(2m, 1) = u,, |I

The coefficients a; have specific values for the given problem:
Z}o::l oyx-1 =0,

210<0=1 0ok = Ug

For the quadrupole distortion, we consider the a, term



Consider the differential operator

d?ys(0 dy (6
LP(6) = —Tog> + 3 Tgg” + 2W(60),

Eigenvalue

Analysis and
Sp ectral which vanish at 0 and 1
Solution
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with y(x) = e 2 sin(nmx)

Numerically we,

¢ Calculate the matrix elements £, = ( W, £ Uy )
using integration techniques over the domain.

s Eigenvalue Problem: Solve the matrix equation
Linn WUn = An Uy




Breakdown of Spectral Method used:

' Differential Operator Definition:

Consider the linear differential operator L defined as:

a6 dy(6
Lp(0) = P+ 352 +2(0)

where 1 (0) is the function of interest.

We employ trial functions ¥ (6) = sin(nm@) , which are Fourier sine series basis functions. These
functions form an orthogonal basis set over the interval [0,1].

These integrals are used to build the matrix L,

Matrix Construction:
Lon = fol(sin mmn)L[sin(nm0)]do
L [sin(nm8)] = (—n?n? + 3inm + 2) sin(nmh) Sy,
Lo = (=212 + 3inm + 2) S
Eigenvalue Computation: we compute
Linn (0) =2 (0)

The principal eigenvalue A,incipqr is identified, representing the dominant




Comparison of Numerical and Analytical Eigenvz;_%s
® -+- Numerical Eigenvalues
! -2- Analytical Eigenvalues
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Numerical
Approach so
far...

Spectral Methods: involves approximating functions by expansions in
terms of basis functions (e.g., Fourier series, Chebyshev polynomials)
and using these expansions to discretize the differential operator.

Define the differential operator £
Specifies the basis functions (Fourier series approximation) for 1 (6).

Construct the matrix £L,,,,, by substituting the Fourier series basis into
L.

Computes the eigenvalues of £L,,,,, , which finds all eigenvalues of a
given matrix.

Finite Difference Method: approximates derivatives using differences
between function values at discrete points.

Discretize the domain.

Create the finite difference approximations for the first and second
derivatives depending on the differential operator.

Construct the differential operator matrix L using these
approximations.

Compute the eigenvalues of the matrix £,,,, .



Calculating the eigenvalue spectrum

® A combined analytic/numerical calculation

® Not foliation dependent
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IN PROGRESS (To Do...)

* Confirm our plot using the finite difference approximation
* Construct outsides MOTS

* Higher eigenvalues
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