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   Background Of Study

v Black holes are celestial objects 
resulting from the gravitational 
collapse of massive stars.

v The challenge in defining a black 
hole revolves around understanding 
the boundary between the region 
occupied by the black hole and the 
surrounding Universe, a boundary 
known as the event horizon.

v A crucial concept in the study of 
black holes is that of Marginally 
Outer Trapped Surfaces (MOTS). 



Trapped 
Surfaces

• A trapped surface is a two-dimensional surface in spacetime 
where the congruence of null geodesics emanating 
orthogonally from the surface converges (has negative 
expansion) in both the inward and outward directions.

•  θ(") < 0 and   θ(ℓ) < 0 
• Trapped surfaces imply the existence of singularities.

Congruence of null geodesics



Marginally 
Outer 

Trapped 
Surfaces 

(MOTS)

• A MOTS is a marginally trapped 
surface where the outward null 
expansion is zero θ(ℓ) = 0.

• The Apparent Horizon is a MOTS 
that bounds the trapped region and 
is contained inside the event 
horizon of a black hole.



 The Stability Operator
The Stability Operator L	 for static axisymmetric solutions is 
defined by:

δ!"θ(ℓ) = L∑ψ = −∆ψ + (
1
2
ℛ − 2 ∥ σ ℓ ∥')ψ

The Eigenvalue Problem:

   Lψ = λψ
The smallest principal eigenvalue holds important 
information on MOTS  stability.

• A positive principal eigenvalue λ > 0: indicates  strict 
stability, suggesting the MOTS bounds a trapped region

• A negative principal eigenvalue	λ < 0: indicates 
instability, suggesting the MOTS might not bound a 
trapped region.



     The Schwarzschild solution

ds$= − (1−
2M
r 	)dt

$ + ( 1−
2M
r 	)

%&dr$ + r$(dθ$ + sin$θ	dϕ$)

The Schwarzschild solution 
characterizes the geometry of 
spacetime around a non-rotating, 
spherically symmetric mass. 
  

Predicts the existence of a singularity 
at the center of the mass.

This solution depicts a spacetime that 
asymptotically approaches flat 
spacetime at large distances from the 
central mass



  Weyl Solutions
• A static axisymmetric metric can be written in the general form:

  ds!= −e" dt	! +	e$!"%!&(dz	!+dρ!) + e$!" ρ!dϕ!

• For a metric to accurately represent the gravitational field in a 
vacuum, the function U(ρ, z) must satisfy the Laplace equation:
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• This allows a (Partial) superposition of solutions.



Weyl-Distorted Schwarzschild Metric
• The Metric is Given By:

ds'= −e'( (1−
2m
r

 ) +	e)'(*'+(
dr'

1− 2m
r
+ r'dθ') + e)'( r'sin'θdϕ'

• If we demand a Schwarzschild singularity, then the metric at the event horizon r=2m:
  

  ds'= 4m'e)'((e,(	)	,.!dθ	' + sin'θ	dϕ')

• The potential U on the horizon is expressed as a series expansion in terms of Legendre 
polynomials P/(cos θ)	:

  U(2m, θ ) = ∑/012 α/P/(cos θ)	and	 V 2m, θ 	= 	2U 2m, θ − 2u3



  

U(2m, 0) = U(2m, π) = u', 

The coefficients α(	have specific values for the given problem:

    ∑)*&+ α$)%& = 0	, 
    ∑)*&+ α$) = u'

For the quadrupole distortion, we consider the α$	term



Eigenvalue 
Analysis and 
Spectral 
Solution

Consider the differential operator

 ℒψ θ = − ,!- .
,.!

 + 3
,- .
,.

 + 2ψ θ ,

with	 ψ x  = e%
"#
!  sin(nπx) 

which vanish at 0 and 1 

   λ/ = −π$n$ − &
0
 .

Numerically we,
v Calculate the matrix elements ℒ"#	= ⟨ ψ", ℒ ψ#	⟩ 
using integration techniques over the domain.

vEigenvalue Problem: Solve the matrix equation 
ℒ"#	ψ#	= λ#	ψ#	  



Breakdown of Spectral Method used:
Differential Operator Definition:

Consider the linear differential operator ℒ	defined as:

`  ℒ𝜓 𝜃 = 4"5 6
46"

	+	3 45 6
46

 + 2 𝜓 𝜃

where 𝜓 𝜃 	is the function of interest.

We employ trial functions 𝜓 𝜃  = sin(𝑛𝜋𝜃)	,	which are Fourier sine series basis functions. These 
functions form an orthogonal basis set over the interval [0,1].
These integrals are used to build the matrix ℒ78	
Matrix Construction:

   ℒ78	 = ∫1
9(sin𝑚𝜋𝜃)ℒ sin 𝑛𝜋𝜃 𝑑𝜃	

 ℒ sin 𝑛𝜋𝜃 = −𝑛'𝜋' + 3𝑖𝑛𝜋 + 2 sin 𝑛𝜋𝜃 	𝛿78	
	 	 ℒ78	= −𝑛'𝜋' + 3𝑖𝑛𝜋 + 2 	𝛿78	
Eigenvalue Computation: we compute 
    ℒ78	𝜓 𝜃  = 𝜆𝜓 𝜃
The principal eigenvalue 𝜆:;<8=<:>?  is identified, representing the dominant mode of the system.



Analytical 
vs. 

Numerical 
Solutions 

for 
Eigenvalues



Numerical 
Approach so 

far...

Spectral Methods: involves approximating functions by expansions in 
terms of basis functions (e.g., Fourier series, Chebyshev polynomials) 
and using these expansions to discretize the differential operator. 

• Define the differential operator ℒ 

• Specifies the basis functions (Fourier series approximation) for 𝜓 𝜃 .

• Construct the matrix ℒ$%	 by substituting the Fourier series basis into 
ℒ.

• Computes the eigenvalues of ℒ$%	, which finds all eigenvalues of a 
given matrix.

Finite Difference Method: approximates derivatives using differences 
between function values at discrete points.

• Discretize the domain.

• Create the finite difference approximations for the first and second 
derivatives depending on the differential operator.

• Construct the differential operator matrix ℒ using these 
approximations.

• Compute the eigenvalues of the matrix ℒ$%	.



 Calculating the eigenvalue spectrum
• A combined analytic/numerical calculation
• Not foliation dependent
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IN PROGRESS (To Do…) 
• Confirm our plot using the finite difference approximation

• Construct outsides MOTS
• Higher eigenvalues
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