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1. Summary of Teleparallel Gravity and Geometry

Teleparallel Gravity: A torsion-based theory of gravity: F (T )-type.

Fundamental Principles and Quantities:

A. Zero Curvature Ra
b = 0 and Zero Non-Metricity Qabµ = 0.

B. Co-frame ha = haµ dx
µ: gravitational effects (Non-proper frame: we

add some inertial effects).

C. Spin-Connection ωa
bµ: inertial effects only.

D. Gauge Metric gab: gauge determination where the physical
processes are occuring.

Some precisions:

A. For frame changing: we use Lorentz Transformation Λa
b.

B. Physical quantities like T , T a
µν , S µ

ab , gµν depend on the previous
fundamental quantities (gµν is not a fundamental quantity).
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Main Features of Teleparallel Gravity:

A. We only need to satisfy the Strong equivalence and Covariance
principle (Inertial and Gravitational masses could not be equivalent
and the theory still hold!).

B. Action Integral in Teleparallel Gravity (F (T )-type):

SF (T ) =

∫
d4 x

[
h

2κ
F (T ) + LMatter

]
(1)

C. From the Least-Action Principle, the Field Equations (FEs) are:

κΘ(ab) = F ′ (T )
◦
G ab + F ′′ (T ) S µ

(ab) ∂µT +
gab
2

[F (T )− T F ′ (T )] ,

(2a)

0 = F ′′ (T ) S µ
[ab] ∂µT , (2b)

where
◦
G ab is the Einstein tensor, Θ(ab) the Energy-Momentum, T

the Torsion scalar, gab the gauge metric, S µ
ab the Superpotential

(Torsion dependent) and κ the coupling constant.
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Additional Precisions:

A. Eqns (2a) and (2b): symmetric and antisymmetric parts.

B. Θ(ab) is obtained from LMatter and satisfying ∇ν Θµν = 0 (Null
hypermomentum Tµν = 0 case).

C. Teleparallel Equivalent of General Relativity (TEGR) (F (T ) = T ):

κΘ(ab) =
◦
G ab as Einstein Eqns in General Relativity (GR).

D. Non-null Hypermomentum cases (i.e. Tµν 6= 0 ) lead to more
complex conservation laws.

5 / 24



2. Spherically Symmetric Spacetimes

We will study the Teleparallel Spherical Symmetric spacetime Geometries.
Examples are: Schwarzschild spacetime, TRW, TdS and others.

A. We like working on a Proper Frame: we look for gravitational
effects.

B. Non-proper frames: inertial effects would mingle with the
gravitational effects and make difficult the analysis.

C. Spherically symmetric spacetimes: we work with orthonormal frame
(the simplest frame), but non-proper. No extra DOF !

D. We use the following coframe in the orthonormal gauge (i.e.
gab = ηab = Diag [−1, 1, 1, 1]):

haµ = Diag [A1(t, r),A2(t, r),A3(t, r),A3(t, r) sin θ] . (3)

E. Spin-connection is ωabc = fj(Xi (ψ, χ), θ) 6= 0 on this orthonormal
frame and find two antisymmetric FEs.
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There are two cases arising from the antisymmetric FEs:

I 1st case: sin χ = 0: χ = n π where n ∈ Z,
cos χ = cos (n π) = ±1 = δ, and

(∂t T ) =

[
δ A1 sinh ψ + ∂t A3

δ A2 cosh ψ + ∂r A3

]
(∂r T ) . (4)

I 2nd case: A1 cosh ψ ∂r T = A2 sinh ψ ∂t T .

A. There are 4 independent components for each set of general
symmetric Spherically Symmetric FEs (two sets of FEs).

B. By default: 3 affine symmetry operators (3 KVs).

C. There are special cases with further symmetries:

I Static spherically symmetric spacetimes (r -dependent only).
I Kantowski-Sachs spacetimes (t-dependent only).
I X4 similarity with λ-parameter.
I Teleparallel de Sitter (TdS) (λ = 0) and Robertson-Walker

(TRW) spacetimes.
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3. Static Field Equations and Solutions
3.1 The FEs and their caracterictics

A. Coframe and spin-connection: (A1, A2, A3) = (A1(r), A2(r), A3(r))
and ωabc = fj(Xi (ψ(r), χ(r)), θ).

B. Static antisymmetric FEs are:

0 =
F ′′ (T ) ∂r T

κA2 A3
[cos χ sinh ψ]

0 =
F ′′ (T ) ∂r T

κA2 A3
[sin χ cosh ψ] . (5)

C. The only solution is sin χ = 0 and sinhψ = 0: χ = n π and ψ = 0
where n ∈ Z, cos χ = cos (n π) = ±1 = δ and coshψ = 1 leading to
the non-zero spin-connection components:

ω233 = ω244 =
δ

A3
ω344 = −cot θ

A3
. (6)

D. 4 KV, but the 4th symmetry leads to static solutions (X4 = ∂t).
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E. This solution leads to the 3 non-trivial symmetric FEs set of the
form:

0 = −F ′′ (T ) (∂r T ) k1 + F ′ (T ) g1, (7a)

κ [ρ+ P] = −2F ′′ (T ) (∂r T ) k2 + 2F ′ (T ) g2, (7b)[
κ ρ+

F (T )

2

]
= −2F ′′ (T ) (∂r T ) k3 + 2F ′ (T ) g3. (7c)

gi = gi (A1(r), A2(r), A3(r)) and ki = ki (A1(r), A2(r), A3(r))
where i = 1, 2, 3.

F. For vacuum (P = ρ = 0), eqns (7a)–(7c) become:

g2
k2

=
g1
k1
, (8a)

g2
k2

= ∂r [ln F ′ (T (r))] , (8b)

F (T )

4
= F ′(T ) (g3 − g2) . (8c)
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3.2 Vacuum FEs for A3 = constant solution

A. For A3 = c0 and the coordinate choice A2 = b0 = 1: static FEs
become:

A′′1 +
A1

c20
=0, (9a)

∂r [lnF ′(T )] =0, (9b)

∂r [lnF (T )] =− δ c0 A1 T
′(r)

4A′1
, (9c)

T (r) =− 2

c20
− 4δ A′1

c0 A1
. (9d)

B. The solution is F (T ) = F1

[
T + 2

c20

]
, leading to GR solutions: not

really teleparallel.

C. Eqn. (9a) leads to an oscillating A1(r) of frequency ω0 = 1
c0

: not
physically relevant.
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3.3 Vacuum FEs with A3 = r coordinate choice

The static FEs with A3 = r and torsion scalar are:

0 = (δ A2 + 1)

(
∂2r A1

A1

)
+

(
∂rA1

A1

)2

− δ
(
∂rA1

A1

)
(∂rA2)

+
1

r2
(δ A2 + 1)

(
A2
2 − 1

)
, (10a)

0 = (δ A2 + 1) ∂r [ln F ′ (T (r))]− ∂r [ln (A1A2)] , (10b)

F (T )

4
=
F ′(T )

r2A2
2

[
− (δ A2 + 2)

(
r ∂rA1

A1

)
− (δ A2 + 1)

]
. (10c)

T (r) =− 2

(
δ

r
+

1

A2 r

)(
δ

r
+

1

A2 r
+ 2

∂rA1

A2 A1

)
. (10d)
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3.4 Power-Law solutions

A. For A1(r) = a0 r
a, A2(r) = b0 r

b and A3 = r : eqns. (10a) – (10d)
become

0 =
1

b20 r
2b

[
δ
(
a2 − a(1 + b)− 1

)
+

(
2a2 − a− 1

)
b0 rb

]
+

[
1

b0 rb
+ δ

]
,

(11a)

F ′(T (r)) = F1 exp

[
(a + b)

∫
dr

r (δ b0 rb + 1)

]
, (11b)

F ′(T (r)) = − b0 r
b+2 F (T (r))

4
[(
δ + 2

b0 rb

)
a +

(
δ + 1

b0 rb

)] , (11c)

T (r) = − 2

r2

[(
δ +

1

b0 rb

)2

+
2 a

b0 rb

(
δ +

1

b0 rb

)]
. (11d)

B. From eqn. (11a): b = 0 is the only possible solution.
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3.5 Exact solutions

A. For A2 = b0 = constant (b = 0 cases), we obtain as eqns. (10a) –
(10c):

0 =

[
A′′1
A1

+
1

r2
(
b20 − 1

)]
(δ b0 + 1) +

(
A′1
A1

)2

= 0, (12a)

F ′(T (r)) = F1 A
1

(δ b0+1)
1 , (12b)

F ′(T (r)) = − b20 r
2 F (T (r))

4
[
(δ b0 + 2)

(
r A′1
A1

)
+ (δ b0 + 1)

] , (12c)

where F1 is an integration constant and δb0 6= −1.

B. The solution for eqn (12a) is:

A1(r) = a0 r
(δ b0+1)

2 (δ b0+2)
(1+S) (

1 + y1 r−S
) (δ b0+1)
(δ b0+2) , (13)

where δ b0 6= −2 and δ b0 6= ±1 and

S = ±
√

1− 4 (δ b0 − 1) (δ b0 + 2). (14)

13 / 24



C. Eqns. (12b) and (12c) become:

F ′(T (r)) =F2 r
(1+S)

2 (δ b0+2)
(
1 + y1 r

−S) 1

(δ b0+2) , (15a)

F ′(T (r)) =− b20 r
2 F (T )

2 (δ b0 + 1) (3− S)
[
1 + 2S

(3−S)[1+y1 r−S ]

] , (15b)

where S 6= 3 and F2 = F1 a
1

(δ b0+1)
0 .

D. Eqn. (10d) for the torsion scalar becomes:

T (r) =
T0

r2

[
1 +

T1

[1 + y1 r−S ]

]
, (16)

where T0 and T1 are constants depending on b0 and S .

E. From eqns (15a) and (15b) we obtain F (T ):

F(T(r)) =−2 (δ b0 + 1) (3− S)

b2
0

F2

[
1 + F3

(
1 + y1 r−S

)−1
]

×
(
1 + y1 r−S

) 1

(δ b0+2) r
(1+S)

2 (δ b0+2)
−2
, (17)

where F3 = 2S
(3−S) (for S 6= 3).
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F. y1 = 0 (Power-law solutions for F (T )): From eqns. (16) and (17)
for all S values, we find:

T (r) =
T0 (1 + T1)

r2
, (18a)

F(T) =−2 (δ b0 + 1) (3− S)

b2
0

F2 (1 + F3)

(
T

T0 (1 + T1)

)1− (1+S)

4 (δ b0+2)
.

(18b)

We have the power-law solution of Golovnev-Guzman
(ArXiv:2103.16970).

G. y1 6= 0: Eqn. (16) becomes:(
T

T0

)(
r2 + y1 r

2−S)− y1 r
−S − (1 + T1) = 0. (19)

To find F (T ) explicitly, we need to find r as a function of T in eqn.
(19).

H. There are some solvable cases for specific values of S :
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1. S = 0: With δ b0 = ±
√
10−1
2 , T0 = − 2

27

(
25± 34

√
10
)
, T1 = 0,

F2 = F1 a
2
9 (−1±

√
10)

0 and F3 = 0, Eqn. (19) leads to

r(T ) =
(

T
T0

)− 1
2

and eqn. (17) will be:

F(T) = − 4

27

(
31± 13

√
10
)

F2 (1 + y1)
2

(3±
√

10)

(
T

T0

)1− 1
2(3±

√
10)
,

(20)

We obtain a power-law solution for F (T ).

2. S = 2: With δ b0 = ±
√
6−1
2 , T0 = − 2

75

(
117± 62

√
6
)
,

T1 = − 8
5

(
1∓
√

6
)
, F2 = F1 a

2
5 (−1±

√
6)

0 and F3 = 4, eqn. (19) leads
to:

r2(T ) =
1

2

(
T0(1 + T1)

T
− y1

)1±

√√√√√1 +
4 y1

T0

T(
T0(1+T1)

T − y1
)2
 .

F(T) =− 4

25

(
19± 9

√
6
)

F2

(
5 r2(T) + y1

)
(r2(T) + y1)

1− 2
3±
√

6 (r(T))
2+ 1

3±
√

6

.

(21)
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3. S = −2: With δ b0 = ±
√
6−1
2 , T0 = −2

(
7± 2

√
6
)
,

T1 = − 8
75

(
9∓
√

6
)
, F2 = F1 a

2
5 (−1±

√
6)

0 and F3 = − 4
5 , eqn. (19)

leads to:

r2(T ) =
1

2

[(
T

T0

)−1
− 1

y1

]1±

√√√√√√1 +
4(1 + T1)

(
T
T0

)
y1
[
1− 1

y1

(
T
T0

)]2
 .

F(T) =−4

5

(
19± 9

√
6
)

F2

(
1 + 5y1 r2(T)

)
(1 + y1 r2(T))

1− 2
3±
√

6 (r(T))
2+ 1

3±
√

6

,

(22)
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4. S = ±1 and δ b0 = −2: Eqn. (12a) becomes (y = ln A1):

0 =y ′′ +
3

r2
. (23)

The solution is A1(r) = a0 r
3 ey1 r , T (r) = 5

2 r
−2 + y1 r

−1 and then

r−1(T ) =
1

5

[
−y1 ±

√
y2
1 + 10T

]
, (24)

F(T) =
F2

3125

[
−y1 ±

√
y2

1 + 10 T

]5

exp

 5y1[
y1 ∓

√
y2

1 + 10 T

]
,

(25)

where F2 = F1

a0
and y1 6= 0.

5. y1 = 0: A1(r) = a0 r
3 and F (T (r)) = F1

a0
r−5. Then eqn. (24)

becomes r−1(T ) =
√

2
5 T

1
2 and eqn (25) is:

F(T) =

(
2

5

) 5
2

F2 T
5
2 . (26)

Here we have a new and different power-law solution.
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6. S = ±1 and δ b0 = 1: Eqn. (12a) reduces to (y = ln A1):

0 =y ′′ +
3

2
y ′2. (27)

The solution is A1(r) = a0 (r + y1)
2
3 , T (r) = − 8

r2

(
1 + 2r

3(r+y1)

)
,

r(T ) and F (T ) become:

r(T ) =−
y1

3
+

1

3T

[
− (y1 T )3 + 2

√
2T
√

27 y41 T 3 − 312 y21 T 2 + 8000T − 48 y1 T 2

] 1
3

−

(
40− y21 T

)
3

[
− (y1 T )3 + 2

√
2T
√

27 y41 T 3 − 312 y21 T 2 + 8000T − 48 y1 T 2

]− 1
3
.

(28)

F(T) =−8 F2
(2r(T) + y1)

(r(T) + y1)
2
3 r2(T)

, (29)

where F2 = F1
√
a0.

7. y1 = 0: A1(r) = a0 r
2
3 , r(T ) =

√
40
3 (−T )−

1
2 and eqn. (29) is:

F(T) =−16

(
3

40

) 5
6

F2 (−T)
5
6 , (30)

where T ≤ 0, as for Golovnev-Guzman solution.
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8. Limits on S: From eqn. (14), real values of δb0 are possible when
−
√

10 ≤ S ≤ +
√

10.

9. Extremum test on eqn. (14) for S : δb0 = − 1
2 , but non explicit r(T )

expression from eqn. (16) in this case.
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4. Features on Perfect Fluids Field Equations Solutions

A. There are dozens of F (T ) solutions for linear perfect fluid (EoS:
P = αρ), perfect dust fluid α = 0 and non-linear perfect fluids.

B. The perfect fluid energy-momentum tensor is:

Θ(ab) = Tab = (P + ρ) ua ub + gab P. (31)

C. We have in addition to satisfy fluid conservation laws ∇ν Θµν = 0
for Tµν = 0 case. For vacuum solution: it is trivially satisfied!

D. Power-law solutions ansatz leads not only to b = 0, but to several
values of b with specific F (T ) solutions, not only pure power of T .

E. Non-linear perfect fluids: using a power-term correction ρw leading
to the EoS P = αρ + β ρw where w > 1 and β � α in several
situations (small correction).

F. We can use several types of ansatz, not only power-law !

G. A3 = constant set of solutions: there are new non-trivial teleparallel
F (T ) solutions, not only restricted to GR solutions.
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5. Conclusion and Perspectives

A. We found and solved the static spherically symmetric FEs in
Teleparallel Gravity (r -dependent spacetimes).

B. We found several static new vacuum spherically symmetric F (T )
solutions, not only power-law solutions.

C. Static new perfect fluid solutions: dozens of new F (T ) solutions.

D. Time-dependent (Kantowski-Sachs) vacuum and perfect fluid
solutions: several new F (T ) solutions. Coming soon...

E. Extra Degree of Freedom and the Strong Coupling problems by
using perturbation limits. Coming soon...

F. Studying specific solution of NGR theory. Coming soon...

G. Studying much more cosmological models by applying perturbations
to Teleparallel Spherical Symmetric spacetimes.
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6. For Further Details

My recent papers on the subject:

1. A.A. Coley, A. Landry, R.J. van den Hoogen and D.D. McNutt,
Spherically symmetric teleparallel geometries,
European Physical Journal C 84, 334 (2024) ArXiv:2402.07238.

2. A. Landry, Static spherically symmetric perfect fluid solutions
in teleparallel F (T ) gravity,
Axioms 13 (5), 333 (2024) ArXiv:2405.09257.

3. A. Landry, Kantowski-Sachs spherically symmetric general and
perfect fluids solutions in teleparallel F (T ) gravity,
In final preparation.
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Thank You Very Much !
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