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Why toy models?



Why toy models?

▶ Many of the issues in formulating a quantum theory of gravity
are methodological.

▶ There is a plethora of approaches, e.g. string theory, loop
quantum gravity, spinfoams, group field theories, etc.

▶ None of these is fully satisfactory on its own since each one
misses one or another ideal that a quantum theory of general
relativity (GR) in 4d is believed to have.

▶ Hence the need for exactly soluble toy models on which one
can test their methods.

▶ Possibility to compare different approaches.



Toy models for gravity

Some notable examples: lower-dimensional gravity, Chern-Simons
theory, topological quantum field theories, etc.

All these models are (more or less) exactly soluble.

But they are topological, i.e. do not possess local degrees of
freedom. Hence not realistic.

We also have quantum cosmological models. But they lack the
field-theoretic subtleties that make GR both interesting and hard
to quantize.

A model bypassing many of these problems is the Husain-Kuchar
(HK) model.



What is the HK model?

Consider a 4d spacetime M. The action is

S =

∫
M
d4x ϵijke

i ∧ e j ∧ F k ,

where e i , i ∈ {1, 2, 3}, are su(2)-valued triads, and
F i = dAi + [A,A]i for an su(2)-valued connection Ai .

How does this differ from general relativity?

If one replaces su(2)-valued triads e i with so(3, 1)-valued tetrads
e I , I ∈ {1, · · · , 4} (and the same for A), one recovers general
relativity.
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Features of HK

One can try defining a spacetime
metric gαβ = δije

i
αe

j
β.

But there exists a special
direction uα = (e ∧ e ∧ e)α such
that uαe iα = 0.

Therefore, uαgαβ = 0, i.e. the
metric is degenerate along one
direction.

We can identify this direction with ‘time’. In other words, there is
no Hamiltonian constraint in the canonical formalism.

But there are local degrees of freedom: the equation of motion
of e is [e,F ]i = 0, i.e. F is not flat.
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Canonical quantization

What is the quantum theory of HK?



Loop quantum gravity redux

Basic idea: geometry is discrete. How is the idea realized?
Through spin networks.

A spin network is a graph Γ with some edges E1, · · · ,EN

intersecting at vertices v1, · · · , vM . The edges are labelled by
unitary irreducible representations jEi

of SU(2) and the vertices by
intertwiners Ivi .

The intertwiners give a map between incoming and outgoing spins,
like Clebsch-Gordon coefficients in angular momentum theory.
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Loop quantum gravity redux

But what have spin networks got to do with geometry?

The answer lies in a quantum tetrahedron!

Every tetrahedron has a dual spin
network.

Using angular momentum operators, one can define operators whose
eigenvalues give the area and volume of the tetrahedron. These
eigenvalues depend on {j1, · · · , j4} and Iv and are thus discrete.

Multiple tetrahedra can be stacked together to triangulate 3-manifolds.
Spin networks straddle these discretized manifolds. Higher number of
tetrahedra yield finer resolutions of quantum geometry. Thus one can
describe arbitrary 3-geometries in this framework.
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Quantum dynamics

But in gravity, we are interested in how 3-geometries evolve. This
is achieved by promoting the Hamiltonian constraint of general
relativity to an operator acting on spin networks. Roughly, the
Hamiltonian constraint adds vertices to a spin network.

However, this step of the LQG program is plagued with serious
ambiguities and difficulties. Fortunately, though, HK does not
have a Hamiltonian constraint. This is what makes it exactly
soluble.

It is as though LQG methods exist just to be applied to HK!
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Our Lord, Our Saviour Mr. Feynman?

As per common physics folklore, path integral methods bypass the
problem of dealing with nasty aspects of canonical quantization
that stem from the underlying classical Hamitlonian formulation of
a theory.

One might thus hope to develop LQG-inspired path integral
frameworks as a way out of the nightmares induced by attempts to
quantize the Hamiltonian constraint.

These methods are pursued in the so-called spinfoam approach to
quantum gravity, and more generally, in something called group
field theories.

However, the precise relations between canonical LQG and these
approaches are rather obscure. We hope to shed light on this
question by formulating a group field theory of the HK model.



But let’s take two steps back

What should be the path integral for HK?

⟨(Σ2,A2,A2)|(Σ1,A1, e1)⟩ =
∫
∂M=Σ1∪Σ2

De DA e−SHK [e,A]

⟨Γ{jEi ,Ivi }|Γ{j̃Ei ,Ĩvi }⟩ = δ{jEi ,Ivi },{j̃Ei ,Ĩvi }



A group field theory primer

Recall that in canonical LQG, SU(2) spin networks were used to
describe the quantum geometry of space.

This geometry-spin-network correspondence is rather abstract.
There is no a priori reference to a Riemannian 3-manifold. Rather,
the latter seems to emerge from the underlying notion of abstract
spin networks.

Group field theories carry this insight to its natural extreme and
attempt to construct entire spacetimes from underlying
group-theoretic data.



2d quantum gravity: spacetime as a Feynman diagram

Suppose God sends an angel with a scripture containing guidance
for theoretical physicists.

The scripture only contains one page with the following
instructions.
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Recognizing a vertex and a propagator, particle physicists
immediately proceed to construct possible Feynman diagrams.



But clueless as to how to relate these diagrams to 2d manifolds,
they turn to that brand of mathematicians known for their diabolic
constructions, i.e. topologists, who reveal the fact that the
propagators are strings which the vertices sew into triangles, which
the Feynman diagrams in turn glue into triangulations of 2d
manifolds.



To connect with LQG, one can label the propagators and vertices
with group-theoretic data.

Then one can write the following action

S =
1

2

∑
{ji},{Ii}

(M j1j ′1I1)2 − λ

3!

∑
{ji},{Ii}

M j1j ′1I1M j2j ′2I2M j2j ′2I2

whose kinetic term corresponds to the propagator and the
interaction term represents the vertex.



If we then expand the partition function

Z =

∫ ∏
ji ,j

′
i ,Ii

dM ji j
′
i Ii e−S[M]

in powers of λ, we get a sum over possible Feynman diagrams, i.e.
over triangulations of all 2d manifolds.

With appropriate modifications, one can generalize the entire
construction to any number of dimensions. This, in essence, is
what group field theories do.



Group field theory of HK

Recall that classically, HK is a theory formulated on 4d manifolds
that reduces upon analysis to a theory of non-dynamical
4-geometries. That is, a 3d initial data hypersurface remains
‘frozen in time’.

Now, as we have seen, a d-dimensional group field theory gives a
recipe to construct all d-dimensional manifolds by gluing together
(d-1)-dimensional objects.

Thus, in a group field theory of HK, there should not be enough
data to achieve this. That is, there shouldn’t be enough
information to glue 3d tetrahedra, say, to form 4d manifolds that
are topologically distinct from 3d manifolds.
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Group field theory of HK

Since it is the interaction term in a group field theory action that is
responsible for gluing (d-1)-dim objects into nontrivial d-dim
manifolds, we claim that HK should be described by a free group
field theory, i.e. no interactions.

We can confirm this suspicion by directly evaluating a group field
theory transition amplitude for a 4-manifold whose boundary is a
disjoint union of two 3-d manifolds, which can be thought of as
initial and final boundary states. We find that the amplitude is
nonzero only if the boundary states are identical.
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Conclusions

▶ HK is a theory with local degrees of freedom that can be fully
quantized using loop quantum gravity and group field theory
methods. Since the results in both approaches exactly match,
we have a clean bridge between ‘canonical’ and ‘covariant’
ways of concretely realizing the idea that geometry is discrete
at a fundamental level.

▶ We learn that from a group field theory perspective, HK is to
full quantum gravity as free scalar field theory is to λϕ4 theory.

▶ This further entails that the Hamiltonian constraint of general
relativity is in some sense hidden in the interaction term of a
group field theory. This is a partial answer to the quandary
that spacetime diffeomorphisms are so essential in general
relativity and yet totally elusive from the perspective of
something as radical as a group field theory in which all
inherent reference to spacetime goes away.
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