Motivating semiclassical gravity

An approximation for bipartite quantum systems

Phys. Rev. D 108, 086033

Irfan Javed (work with V. Husain, S. Seahra, and N. X) University of New Brunswick, Fredericton

The spectrum of Hydrogen with proton classical and electron quantum is correct.

This treatment is *asymmetric* though-the *electron* cannot be classical instead.

It works as it is the famous **Born-Oppenheimer** approximation, and its error parameter m_e/M_p is small.

There is no need to account for **backreaction**, for m_e/M_p stays small.

There is *no consensus* on a quantum theory of gravity to date.

... so we rely on approximations with *classical* gravity and *quantum* matter.

Quantized matter carrying energy to infinity from a classical black hole

 $\label{eq:Black} Black hole mass is corrected \\ via energy conservation (dM/dt \sim -1/M^2)$

We need to account for backreaction but do so in an *ad hoc* manner.

Are such *classical-quantum* approximations derivable from the fundamentals?
 If so, how good are they, or what are their *regimes of validity*?

A bipartite system (subsystem 1 + subsystem 2)

$$\begin{split} \mathcal{H}(q_1,p_1,q_2,p_2) &= \mathcal{H}(q_1,p_1) + \mathcal{H}(q_2,p_2) + \lambda \mathcal{V}_1(q_1,p_1) \mathcal{V}_2(q_2,p_2) \left(\textbf{Classical-classical} \right) \\ \hat{H} &= \hat{H}_1 \otimes \hat{l}_2 + \hat{l}_1 \otimes \hat{H}_2 + \lambda \hat{V}_1 \otimes \hat{V}_2 \left(\textbf{Quantum-quantum} \right) \end{split}$$

A classical-quantum approximation for this system

Classical eqs. with **quantum** expectations
$$\begin{cases} \partial_t q_1 = \partial_{p_1} \left(\mathcal{H}_1 + \lambda \langle \psi | \hat{V}_2 | \psi \rangle \mathcal{V}_1 \right) \\ \partial_t p_1 = -\partial_{q_1} \left(\mathcal{H}_1 + \lambda \langle \psi | \hat{V}_2 | \psi \rangle \mathcal{V}_1 \right) \end{cases}$$
Quantum eq. with **classical** trajectory $\left\{ \iota \partial_t | \psi \rangle = \left(\hat{H}_2 + \lambda \mathcal{V}_1(q_1, p_1) \hat{V}_2 \right) | \psi \rangle^1$

This is reminiscent of the *semiclassical Einstein equation*: $G_{\alpha\beta} = M_{Pl}^{-2} \langle \psi | \hat{T}_{\alpha\beta} | \psi \rangle$.

¹V. Husain, I. Javed, and S. Singh, Phys. Rev. Lett. 129, 111302 (2022).

[©] Irfan Javed (work with V. Husain, S. Seahra, and N. X)

Could the said classical-quantum (CQ) approximation be derived from the known correct quantum-quantum (QQ) dynamics, which is given by the following?

$$\begin{split} u\partial_t \left|\psi\right\rangle &= \hat{H} \left|\psi\right\rangle \\ \hat{H} &= \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2 + \lambda \hat{V}_1 \otimes \hat{V}_2 \end{split}$$

Others too have attempted to derive this CQ approximation but *without much success*.²

Our approach relies on **somewhat different assumptions** from theirs.

 ²T. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)
 C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).

$$\iota\partial_{t}\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle \xrightarrow{\text{Approximation}} \begin{cases} \partial_{t}q_{1} = \partial_{p_{1}}\left(\mathcal{H}_{1} + \lambda\left\langle\psi\right|\hat{V}_{2}\left|\psi\right\rangle\mathcal{V}_{1}\right)\\ \partial_{t}p_{1} = -\partial_{q_{1}}\left(\mathcal{H}_{1} + \lambda\left\langle\psi\right|\hat{V}_{2}\left|\psi\right\rangle\mathcal{V}_{1}\right)\\ \iota\partial_{t}\left|\psi\right\rangle = \left(\hat{H}_{2} + \lambda\mathcal{V}_{1}(q_{1}, p_{1})\hat{V}_{2}\right)\left|\psi\right\rangle \end{cases}$$

Assumptions allowing the approximation

We find that the CQ approximation is valid if the following hold.

- 1. Coupling parameter λ is small.
- 2. Entanglement between subsystems is small.
- 3. Quantum state of subsystem 1 is a *semiclassical* state.

We start by assuming that the system is in a nearly product state (entanglement is small):

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle + \mathcal{O}(\lambda).$$

 $|\psi\rangle$ may be written as a matrix, Z, which, in turn, defines **reduced density matrices** $\hat{\rho}_1 = ZZ^{\dagger}$ and $\hat{\rho}_2 = Z^{T}Z^{*}$ for the two subsystems.

Schrodinger equation then leads us to

$$\iota \partial_t \hat{\rho}_1 = \left[\hat{H}_1, \hat{\rho}_1 \right] + \lambda \left[\hat{V}_1, Z \hat{V}_2^{\mathsf{T}} Z^{\dagger} \right]$$

and

$$\iota \partial_t \hat{\rho}_2 = \left[\hat{H}_2, \hat{\rho}_2 \right] + \lambda \left[\hat{V}_2, Z^\mathsf{T} \hat{V}_1^\mathsf{T} Z^* \right].$$

If we use the expansion for Z, we could read off **effective Hamiltonians** from the equations of motion for $\hat{\rho}_1$ and $\hat{\rho}_2$:

$$\iota \partial_t \hat{\rho}_{1,2} = \left[\hat{H}_{1,2}^{\mathsf{eff}}, \hat{\rho}_{1,2} \right] + \mathcal{O}\left(\lambda^2 \right),$$

where $\hat{H}_{1,2}^{\text{eff}} = \hat{H}_{1,2} + \lambda \langle \psi_{2,1} | \hat{V}_{2,1} | \psi_{2,1} \rangle \hat{V}_{1,2}.$

Finally, we assume a sharply peaked semiclassical state for subsystem 1 such that

$$\partial_{t} q_{1} \approx \partial_{p_{1}} \mathcal{H}_{1} + \lambda \left\langle \psi_{2} \right| \hat{V}_{2} \left| \psi_{2} \right\rangle \partial_{p_{1}} \mathcal{V}_{1}$$

and

$$\partial_t \mathbf{p}_1 \approx -\partial_{q_1} \mathcal{H}_1 - \lambda \left\langle \psi_2 \right| \hat{\mathbf{V}}_2 \left| \psi_2 \right\rangle \partial_{q_1} \mathcal{V}_1,$$

where $q_1 = \langle \psi_1 | \hat{q}_1 | \psi_1 \rangle$, $p_1 = \langle \psi_1 | \hat{p}_1 | \psi_1 \rangle$, and $\langle \psi_1 | \hat{V}_1 | \psi_1 \rangle \approx \mathcal{V}_1(q_1, p_1)$.

Being an approximation after all, the CQ scheme holds for a *finite* amount of time. Failure could be determined by a time scale called *scrambling time*.

Scrambling time

It is the characteristic time for the growth of entanglement between subsystem 1 and subsystem 2 from 0 to $\mathcal{O}(\lambda)$.

Scrambling time is defined as above, for it is calculated through linear perturbation theory.

For von Neumann entanglement entropy $S_{VN}(t)$ to be $\mathcal{O}(\lambda) \ll \ln(d)$, where *d* is the minimum of the dimensions of the two Hilbert spaces involved,

$$t \ll t_{\rm VN} = \frac{\ln(d)}{\mathcal{E}(t_{\rm VN})},$$

where t_{VN} is the srambling time and $\mathcal{E}(t) = (\lambda/t) \int_0^t dt' \sqrt{\left\langle \hat{V}_1(t')^2 \right\rangle_{(0)} \left\langle \hat{V}_2(t')^2 \right\rangle_{(0)}}$.

A similar calculation could be done with *linear entropy* as well.

This whole formalism, in fact, could be redone through *alternative Hamiltonians* as shown in detail in our paper (Phys. Rev. D 108, 086033).

Results and discussion CQ vs. QQ and CC

-2

-3-

ò

20

cc - co

40 60 80

time

 $QQ - \tau = \tau_{lin}$

 $_{v} = 25, v = 2, \sigma = 0, \lambda = 0.0005, \zeta_{1} = 12, \zeta_{2} = 2$

100 150 200

CQ -

time

 $QQ - \tau = \tau_{lin}$

n max

osition (oscillator 2)

- 3-

ò

50

CC

-2-

100

10

6

time $-QQ - \tau = \tau_{lin}$

cc — cq

Results and discussion CQ vs. QQ

Key messages

- 1. Derivation of a classical-quantum approximation like $G_{\alpha\beta} = M_{Pl}^{-2} \langle \psi | \hat{T}_{\alpha\beta} | \psi \rangle$
- 2. Approximation failure after a (calculable) finite amount of time

Future directions

- 1. Explicit generalization to gravity remains to be seen (e.g., in parametric resonance).
- 2. Long-term behavior of entropy $(S \sim 2/3 \ln(E))$ asks for further exploration.

Thank you! Questions?