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Introduction A simple example

The spectrum of Hydrogen with proton classical and electron quantum is correct.

Electron

me @

~

Proton

Energy
I

This treatment is asymmetric though—the electron cannot be classical instead.

It works as it is the famous Born-Oppenheimer approximation, and its error pa-

rameter me /M, is small.

There is no need to account for backreaction, for me /M, stays small.
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Introduction A not-so-simple example

There is no consensus on a quantum theory of gravity to date.

... so we rely on approximations with classical gravity and quantum matter.

Quantized matter
N\ N\ carrying energy to infinity
from a classical black hole

Black hole mass is corrected
via energy conservation (dM/dt ~ —1/M?)

We need to account for backreaction but do so in an ad hoc manner.
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Introduction Main questions

1. Are such classical-quantum approximations derivable from the fundamentals?

2. If so, how good are they, or what are their regimes of validity?
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Introduction Simple quantum mechanics

Subsystem 1 Subsystem 2

212

A bipartite system (subsystem 1 + subsystem 2)

H(G1,p1,92,P2) = H(G1,p1) + H(G2,P2) + AVi(G1,p1)V2(q2, p2) (Classical-classical)
A=HA @1+ 5 A, + AV, ® V, (Quantum-quantum)
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Introduction Simple quantum mechanics

A classical-quantum approximation for this system

= Oy (M1 + 2 (Wl V2 ) 1)
Otp1 = —9g, (H1 + XA (@ V2 |v) V1)

&=

Classical eqgs. with quantum expectations {

Quantum eq. with classical trajectory { WO ) = (Flz + A\i(aq, p1)\72) ap) 1

This is reminiscent of the semiclassical Einstein equation: G5 = M;,z (| Tap [1).

Ty, Husain, I. Javed, and S. Singh, Phys. Rev. Lett. 129, 111302 (2022).
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Introduction . .. classical-quantum derivation?

Could the said classical-quantum (CQ) approximation be derived from the known
correct quantum-quantum (QQ) dynamics, which is given by the following?
B |v) = Alp)
A=foh+heH+Ahe b,
Others too have attempted to derive this CQ approximation but without much suc-
2
cess.

Our approach relies on somewhat different assumptions from theirs.

27. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)
C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).
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Model Assumptions

oy = By (M + X (6] V2 ) W)
onpr = 0y (M + A (0] V2 [9) V1)
rlp) = (Fo + NVa(r,pr)¥a ) 1)

Assumptions allowing the approximation

We find that the CQ approximation is valid if the following hold.
1. Coupling parameter X is small.

Approximation
P

10wy = H )

2. Entanglement between subsystems is small.
3. Quantum state of subsystem 1 is a semiclassical state.
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Model Derivation

We start by assuming that the system is in a nearly product state (entanglement
is small):

[¥) = 1) ® [1h2) + O(A).

|«») may be written as a matrix, Z, which, in turn, defines reduced density matrices
p = 2ZZ" and p, = Z"Z* for the two subsystems.

Schrodinger equation then leads us to
1Oipr = [91,/31] +A [\7172‘7;ZT]

and . . .
1Bufy = [Hz,ﬁz} £ [vz,vaIz*] .
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Model Derivation

If we use the expansion for Z, we could read off effective Hamiltonians from the
equations of motion for p; and pa:

LOiP12 = [F/if;,ﬁm] + O ()\2) :

where FI?@ = Fhg + X (21| Var [th21) Vaz.
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Model Derivation

Finally, we assume a sharply peaked semiclassical state for subsystem 1 such
that
o1 = OpyHi + A (2| Va |1h2) Op Vi

and .
Op1 = —0g Ha — A (2| V2 [2) Og V1,

where g1 = (1| G1 [¢1), p1 = (¥1] b1 [n), and (| Vi [yn) = Vi(ga, pr).
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Model Scrambling time

Being an approximation after all, the CQ scheme holds for a finite amount of time.

Failure could be determined by a time scale called scrambling time.

Scrambling time

It is the characteristic time for the growth of entanglement between subsystem 1 and sub-
system 2 from 0 to O(\).

Scrambling time is defined as above, for it is calculated through linear perturba-
tion theory.
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Model Scrambling time

For von Neumann entanglement entropy Syn(t) to be O(X) < In(d), where d is
the minimum of the dimensions of the two Hilbert spaces involved,

In(d)

E(twn)’

t<<tyn =

. . q o t e 7. (/\2 (/. (1/)2
where tyy is the srambling time and £(t) = (A/t) [ dt \/<V1(t ) >(0) <V2(t ) >(0).

A similar calculation could be done with linear entropy as well.

This whole formalism, in fact, could be redone through alternative Hamiltonians
as shown in detail in our paper (Phys. Rev. D 108, 086033).
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Results and discussion cQ vs. QQ and CC
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Results and discussion cQ vs. QQ and CC
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Results and discussion cQ vs. QQ
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Results and discussion Error and entropy
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Results and discussion Observations

1. Derivation of a classical-quantum approximation like G, 5 = M;,z (¥ '7'043 [3)

2. Approximation failure after a (calculable) finite amount of time

Future directions

1. Explicit generalization to gravity remains to be seen (e.g., in parametric resonance).
2. Long-term behavior of entropy (S ~ 2/3In(E)) asks for further exploration.
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Thank you!
Questions?
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