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Introduction A simple example

The spectrum of Hydrogen with proton classical and electron quantum is correct.

Mp

Proton

me

Electron Energy

This treatment is asymmetric though—the electron cannot be classical instead.

It works as it is the famous Born-Oppenheimer approximation, and its error pa-
rameter me/Mp is small.

There is no need to account for backreaction, for me/Mp stays small.
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Introduction A not-so-simple example

There is no consensus on a quantum theory of gravity to date.

. . . so we rely on approximations with classical gravity and quantum matter.

Quantized matter
carrying energy to infinity

from a classical black hole

Black hole mass is corrected
via energy conservation (dM/dt ∼ −1/M2)

We need to account for backreaction but do so in an ad hoc manner.
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Introduction Main questions

1. Are such classical-quantum approximations derivable from the fundamentals?

2. If so, how good are they, or what are their regimes of validity?
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Introduction Simple quantum mechanics

q1, p1

Subsystem 1

q2, p2

Subsystem 2

λV1V2

A bipartite system (subsystem 1 + subsystem 2)

H(q1, p1, q2, p2) = H(q1, p1) +H(q2, p2) + λV1(q1, p1)V2(q2, p2) (Classical-classical)

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + λV̂1 ⊗ V̂2 (Quantum-quantum)
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Introduction Simple quantum mechanics

A classical-quantum approximation for this system

Classical eqs. with quantum expectations

∂tq1 = ∂p1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
∂tp1 = −∂q1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
Quantum eq. with classical trajectory

{
ι∂t |ψ⟩ =

(
Ĥ2 + λV1(q1, p1)V̂2

)
|ψ⟩ 1

This is reminiscent of the semiclassical Einstein equation: Gαβ = M−2
Pl ⟨ψ| T̂αβ |ψ⟩.

1V. Husain, I. Javed, and S. Singh, Phys. Rev. Lett. 129, 111302 (2022).
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Introduction . . . classical-quantum derivation?

Could the said classical-quantum (CQ) approximation be derived from the known
correct quantum-quantum (QQ) dynamics, which is given by the following?

ι∂t |ψ⟩ = Ĥ |ψ⟩

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + λV̂1 ⊗ V̂2

Others too have attempted to derive this CQ approximation butwithoutmuch suc-
cess.2

Our approach relies on somewhat different assumptions from theirs.

2T. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)
C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).

© Irfan Javed (work with V. Husain, S. Seahra, and N. X) 7



Model Assumptions

ι∂t |ψ⟩ = Ĥ |ψ⟩ Approximation
========⇒


∂tq1 = ∂p1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
∂tp1 = −∂q1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
ι∂t |ψ⟩ =

(
Ĥ2 + λV1(q1, p1)V̂2

)
|ψ⟩

Assumptions allowing the approximation

We find that the CQ approximation is valid if the following hold.
1. Coupling parameter λ is small.
2. Entanglement between subsystems is small.
3. Quantum state of subsystem 1 is a semiclassical state.
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Model Derivation

We start by assuming that the system is in a nearly product state (entanglement
is small):

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩+O(λ).

|ψ⟩may be written as a matrix, Z, which, in turn, defines reduced density matrices
ρ̂1 = ZZ† and ρ̂2 = ZTZ∗ for the two subsystems.

Schrodinger equation then leads us to

ι∂tρ̂1 =
[
Ĥ1, ρ̂1

]
+ λ

[
V̂1,ZV̂T

2Z†
]

and
ι∂tρ̂2 =

[
Ĥ2, ρ̂2

]
+ λ

[
V̂2,ZTV̂T

1 Z∗
]
.
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Model Derivation

If we use the expansion for Z, we could read off effective Hamiltonians from the
equations of motion for ρ̂1 and ρ̂2:

ι∂tρ̂1,2 =
[
Ĥeff

1,2, ρ̂1,2
]
+O

(
λ2

)
,

where Ĥeff
1,2 = Ĥ1,2 + λ ⟨ψ2,1| V̂2,1 |ψ2,1⟩ V̂1,2.
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Model Derivation

Finally, we assume a sharply peaked semiclassical state for subsystem 1 such
that

∂tq1 ≈ ∂p1H1 + λ ⟨ψ2| V̂2 |ψ2⟩ ∂p1V1

and
∂tp1 ≈ −∂q1H1 − λ ⟨ψ2| V̂2 |ψ2⟩ ∂q1V1,

where q1 = ⟨ψ1| q̂1 |ψ1⟩, p1 = ⟨ψ1| p̂1 |ψ1⟩, and ⟨ψ1| V̂1 |ψ1⟩ ≈ V1(q1, p1).
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Model Scrambling time

Being an approximation after all, the CQ scheme holds for a finite amount of time.

Failure could be determined by a time scale called scrambling time.

Scrambling time

It is the characteristic time for the growth of entanglement between subsystem 1 and sub-
system 2 from 0 to O(λ).

Scrambling time is defined as above, for it is calculated through linear perturba-
tion theory.
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Model Scrambling time

For von Neumann entanglement entropy SVN(t) to be O(λ) ≪ ln(d), where d is
the minimum of the dimensions of the two Hilbert spaces involved,

t ≪ tVN =
ln(d)
E(tVN)

,

where tVN is the srambling time and E(t) = (λ/t)
∫ t
0 dt′

√〈
V̂1(t′)2

〉
(0)

〈
V̂2(t′)2

〉
(0)

.

A similar calculation could be done with linear entropy as well.

This whole formalism, in fact, could be redone through alternative Hamiltonians
as shown in detail in our paper (Phys. Rev. D 108, 086033).
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Results and discussion CQ vs. QQ and CC
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Results and discussion CQ vs. QQ and CC

© Irfan Javed (work with V. Husain, S. Seahra, and N. X) 15



Results and discussion CQ vs. QQ
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Results and discussion Error and entropy
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Results and discussion Observations

Key messages

1. Derivation of a classical-quantum approximation like Gαβ = M−2
Pl ⟨ψ| T̂αβ |ψ⟩

2. Approximation failure after a (calculable) finite amount of time

Future directions

1. Explicit generalization to gravity remains to be seen (e.g., in parametric resonance).
2. Long-term behavior of entropy (S ∼ 2/3 ln(E)) asks for further exploration.
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Thank you!
Questions?
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