Atlantic General Relativity 2024

Contribution ID: 4 Type: Oral

On the impact of \boxtimes (\boxtimes) gravity on the Large Scale Structure

We investigate the exponential \boxtimes (\boxtimes) symmetric teleparallel gravitation, namely \boxtimes (\boxtimes) = \boxtimes + \boxtimes \boxtimes 0(1 - \boxtimes ^(- \boxtimes \backslash \boxtimes 0)) using ME-GADGET code to probe the structure formation with box sizes \boxtimes box = 10/100 Mpc/h and middle resolution \boxtimes 1/3 = 512. To reproduce viable cosmology within the aforementioned modified gravity theory, we first perform Markov Chain Monte Carlo (MCMC) sampling on OHD/BAO/Pantheon datasets and constrain a parameter space. Furthermore, we also derive theoretical values for deceleration parameter \boxtimes (\boxtimes), statefinder pair $\{\boxtimes$, \boxtimes and effective gravitational constant \boxtimes eff, perform \boxtimes (\boxtimes) diagnostics. While carrying out N-body+SPH simulations, we derive CDM+baryons overdensity/temperature/mean molecular weight fields, matter power spectrum (both 2/3D, with/without redshift space distortions), bispectrum, two-point correlation function and halo mass function. Results for small and big simulation box sizes are therefore properly compared, halo mass function is related to the Seth-Tormen theoretical prediction and matter power spectrum to the standard CAMB output.

Author: ARORA, Simran (BITS-Pilani, Hyderabad Campus, India)

Co-authors: Mr SOKOLIUK, Oleksii (Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO NASU), Kyiv, 03143, Ukraine); Mr PRAHARAJ, Subhrat (BITS-Pilani, Hyderabad Campus, India); Prof. BARANSKY, Alexander (Astronomical Observatory, Taras Shevchenko National University of Kyiv, 3 Observatorna St., 04053 Kyiv, Ukraine); Prof. SAHOO, P. K. (BITS-Pilani, Hyderabad Campus, India)

Presenter: ARORA, Simran (BITS-Pilani, Hyderabad Campus, India)

Session Classification: Session 2.4