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The GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

A > Take seriously the idea of a microscopic structure of spacetime.

> Access to powerful field theoretic methods (Fock space, RG...)!

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.081f
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The GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

> Take seriously the idea of a microscopic structure of spacetime.

A
> Access to powerful field theoretic methods (Fock space, RG...)!
Group Field Theory Quanta
82
» GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.
» Quantum numbers associated with fields discretized over a + &3 &1
»'(ga, ®)10) = )

tetrahedron (g, = gravitational, ® = scalar fields).

> GFT field domain is a group manifold G: not spacetime!
84

Oriti 1807.04875; Gielen, Sindoni 1602.081
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The GFT approach to quantum gravity

Ts are QFTs of atoms of spac b

A > Take seriously the idea of a microscopic structure of spacetime.

> Access to powerful field theoretic methods (Fock space, RG...)!

Group Field Theory Quanta

GFT quanta are atoms of quantum 3-space, i.e. tetrahedra. g2
Quantum numbers associated with fields discretized over a + &3 81
tetrahedron (g, = gravitational, ® = scalar fields). ' (g2, @) 10) = [0}
> GFT field domain is a group manifold G: not spacetime!
84

Group Field Theory Processes

> GFT Feynman diagrams I (QG processes) are associated with
4d triangulated (pseudo-)manifolds. (3d)
=

Zgrr = discrete matter-gravity path-integral.

GFT interactions are combinatorially non-local.

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.081!

Emergent Cosmology from QG



» Quantum-geometric inflation?

Homogeneous Inhomogeneities:

A . jons?
sector NTEI PRI > Nature of cosm. perturbations?

>

> Nature of dark matter?
> Nature of dark energy?

> Singularity resolution? Inhomogeneities:  ” Impact of singularity resolution on pert.?

dynamics > Is the evolution of pert. modified by QG effects?
»>



» Quantum-geometric inflation?

Homogeneous Inhomogeneities:

A . jons?
sector NTEI PRI > Nature of cosm. perturbations?
>

> Nature of dark matter?
> Nature of dark energy?

> Singularity resolution? Inhomogeneities:  ” Impact of singularity resolution on pert.?

dynamics > Is the evolution of pert. modified by QG effects?
»>

Challenges in background independent and emergent QG:
» How to define (in)homogeneity?
» How to extract macroscopic dynamics?

> How to construct cosmological geometries?



» Quantum-geometric inflation?

Homogeneous Inhomogeneities:

sector [INTEIPRRTHIINY  > Nature of cosm. perturbations?
>

> Nature of dark matter?
> Nature of dark energy?

> Singularity resolution? Inhomogeneities:  ” Impact of singularity resolution on pert.?
dynamics > Is the evolution of pert. modified by QG effects?

>

Challenges in background independent and emergent QG:

> How to define (in)homogeneity? / Relational strategy
| 4

How to extract macroscopic dynamics?

> How to construct cosmological geometries?



» Quantum-geometric inflation?

Homogeneous Inhomogeneities:

sector [INTEIPRRTHIINY  > Nature of cosm. perturbations?
>

> Nature of dark matter?
> Nature of dark energy?

> Singularity resolution? Inhomogeneities: » Impact of singularity resolution on pert.?

dynamics > Is the evolution of pert. modified by QG effects?
»>

Challenges in background independent and emergent QG:

> How to define (in)homogeneity? / Relational strategy
- \>

How to extract macroscopic dynamics?

> How to construct cosmological geometries? ———— Coarse-graining/
> ooo collective behavior
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notation: ¢ - 1 :/ dQ e
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GFT coherent states

» From the GFT perspective, continuum geometries are associated to large number of quanta.

> Look for states that can accommodate an infinite number of quanta

LM, Oriti, Pithis, Thiirigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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notation: ¢ - 1 :/ dQ e
JQ

GFT coherent states

» From the GFT perspective, continuum geometries are associated to large number of quanta.

> Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp [U . ﬁ‘} |0)

Collective states |
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Collective states and observables
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GFT coherent states

» From the GFT perspective, continuum geometries are associated to large number of quanta.

v

Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp [(—T . ?‘} |0)
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Macroscopic dynamics = mean-field approximation
GFT dynamics is captured by quantum equations of motion, or Schwinger-Dyson (SD) equations.
Simplest SD equations are the averaged quantum equations of motion: {55@:7/5927)1/) =0.

v

v
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Macroscopic dynamics = mean-field approximation
» GFT dynamics is captured by quantum equations of motion, or Schwinger-Dyson (SD) equations.
> Simplest SD equations are the averaged quantum equations of motion: {55@:7/5927)1/) =0.

0p(gar x)

Eg: <M> = [K - o](ga, x*) % =0.

> Equivalent to a mean-field (saddle-point) approximation of Zgfr.

LM, Oriti, Pithis, Thiirigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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From the GFT perspective, continuum geometries are associated to large number of quanta.

Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp [(f . ?‘} |0)

w
4]
S
1]
3
2]
o
2
=]
9]
<
o
U J
Macroscopic dynamics = mean-field approximation
» GFT dynamics is captured by quantum equations of motion, or Schwinger-Dyson (SD) equations.
> Simplest SD equations are the averaged quantum equations of motion: {55@:7/5927)1/) =0.

E.g.: 765““@' 2 = [K - o](ga, x“) 4 76\/[;4 el =0.
32(ga, %) / ’

0" (82, X¥) | p=or

> Equivalent to a mean-field (saddle-point) approximation of Zgfr.

Macroscopic quantities = Averaged one-body operators

» Collective behavior is captured by (second quantized) one-body operators 0, such as
R=op"-0, d=p"-(0p), V=9 vg].

> Associate macroscopic quantities with averages (é}u

12.12677; O g 1602
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GFT coherent states

From the GFT perspective, continuum geometries are associated to large number of quanta.

Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp [(f . ?‘} |0)
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Macroscopic dynamics = mean-field approximation
» GFT dynamics is captured by quantum equations of motion, or Schwinger-Dyson (SD) equations.
> Simplest SD equations are the averaged quantum equations of motion: {55@:7/5927)1/) =0.

Eg: 3Serr[@, @1\ K - o](gs x*) 4 Ve, ¢*] —0.
O\ elen x) /) )

0" (82, X¥) | p=or

> Equivalent to a mean-field (saddle-point) approximation of Zgfr.

Macroscopic quantities = Averaged one-body operators

» Collective behavior is captured by (second quantized) one-body operators 0, such as
R=op"-0, d=p"-(0p), V=9 vg].
> Associate macroscopic quantities with averages (é}

bo

Eg: No=(N) =o¢"-0, o, = (d) =o".
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Relational peaking
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GFT coherent states notation: ¢ - 1 7/9‘19 wxth

> From the GFT perspective, continuum geometries are associated to large number of quanta.

> Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp {(T . WET} |0)

Macroscopic quantities = Averaged one-body operators

» Collective behavior is captured by (second quantized) one-body operators 0, such as

R=ot ¢, d=9¢"-(¢0), V=0 Vg
> Associate macroscopic quantities with averages <O>'1P‘
Eg: No=(N) =o"-0, b, = (&) =6 - (¢0), V, =(V)=0"-V]o].
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Relational peaking

GFT coherent states notation: ¢ - 1 7/9‘19 wxth

From the GFT perspective, continuum geometries are associated to large number of quanta.

Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp {n . ,2"} |0)

Collective states

Macroscopic quantities = Averaged one-body operators

» Collective behavior is captured by (second quantized) one-body operators 0, such as
R=ot ¢, d=9¢"-(¢0), V=0 Vg
> Associate macroscopic quantities with averages <O>1P

Eg: No=(N) =o"-0, b, = (&) =6 - (¢0), V, =(V)=0"-V]o].

Relational peaking

> Constructing relational observables in GFT is not easy (QFT with no continuum intuition).

> Relational localization implemented at an effective level on observable averages.
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Localization

GFT coherent states notation: ¢ - 1 7/9‘19 wxth

From the GFT perspective, continuum geometries are associated to large number of quanta.

Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |o) = N, exp {n . ,2"} |0)

Macroscopic quantities = Averaged one-body operators

Collective behavior is captured by (second quantized) one-body operators 0, such as
R=ot ¢, d=9¢"-(¢0), V=0 Vg
Associate macroscopic quantities with averages <O>1P

Eg: No=(N) =o"-0, b, = (&) =6 - (¢0), V, =(V)=0"-V]o].

Relational peaking

Constructing relational observables in GFT is not easy (QFT with no continuum intuition).
Relational localization implemented at an effective level on observable averages.

ox = (fixed peaking function 7)) X (reduced wavefunction &),

E.g.: x" frame and |o) : 5 , ,
S 9V 0,02 (0),, = OBl (), =

LM, Oriti, Pithis, Thiirigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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Quantum theory

Group Field Theory

Collective Relational

Observable
averages
(0

Cosmological

Classical theory

Cosmology




Effectively
Collective relationally
localized

Quantum theory Observable FLRW background
GFT + 1 MCMF averages with 1 MCMF

scalar clock \0 (0)o scalar clock x°

Coherent




Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: 6 depends only on MCMF clock XO. 0=35" —2i75, — E2&7
0y v v v

> lIsotropy: 6, = py€ . o . 2,0
e S Vel®) = X Vol P
» Mesoscopic regime: negligible interactions. @

5881; Jercher, Ori 09 Polaczek 19
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Effective FLRW cosmological dynamics

Mean-field approximation

(

Homogeneity: & depends on
Isotropy: &, = pvem“

Mesoscopic regime: negligibl

3V,

ly on MCMF clock x°.

~l i ) 2
0=¢6, —2i%é, — E, &,

o 0 ~ 12,0
e Vel®) = X Vol P
e Interactions. v

{ Effective volume dynamics ] ~

%4 )2: <2ZU Vpusgn(

VY 2Y, Ve [Eu 2

2
v

03]

2
Pu)VEw — Q2 /p% + 12 p?
3%, Vor? A o Vurd

LM, Oriti 2008.02774-2010.09700; Oriti

Sindoni, Wilson-Ewing 16

02.05881; Jercher, Oriti

Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: 6 depends only on MCMF clock XO.

) 0 =5/ —2i%5, — E25,

> lIsotropy: &, = pue'’v . 2 o B
. o ) Vo(x') = V|G ]7(x7).

> Mesoscopic regime: negligible interactions. v

pe

{ Effective volume dynamics ] ~

2
( v, )2: <22U Vopusen(py,)v/Ew — Q2 /03 +u3,pz> vy 23, Vo [Eo 423 p7]

K
3V, 3%, Vurd Vo >, Vor}

Large number of quanta (large volume and late times)

v Volume quantum fluctuations under control.

> If [Li is mildly dependent on v (or one v, is
dominating) and equal to 37 G

Classical limit

(V. /3V,)? ~ 470G /3 —> flat FLRW

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: 6 depends only on MCMF clock XO.

) 0 =5/ —2i%5, — E25,

> lIsotropy: &, = pue'’v . 2 o B
. o ) Vo(x') = V|G ]7(x7).

> Mesoscopic regime: negligible interactions. v

pe

{ Effective volume dynamics ] ~

2
( A )2: <22U Vopusen(p)VEs — @/ +T%T%> VY250, Ve [E + 2202

K
3V, 3>, Vup? V, > Vor?

Large number of quanta (large volume and late times)

~ Volume quantum fluctuations under control. v Matching with GR (in harmonic gauge)!

0 0
> If [Li is mildly dependent on v (or one v, is ¥ X = (X >f7x°' clock quantum fluct. ~ 0.
dominating) and equal to 37 G v <|:|0>{7 _ <’:Id>axu (i memmers 2 0

X0

Classical limit

(V. /3V,)* ~ 4w G /3 — flat FLRW Effective relational framework reliable!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: & degends only on MCMF clock x°. 0=35" — 2ifed, — E3&7
> lIsotropy: &, = pue'’v . .
= B Vel®) = X Vol P
> Mesoscopic regime: negligible interactions. v
- { Effective volume dynamics ] ~
2
( v, )2: 25, Vepusen(ol)VE = QR/E T ik ph T Vel _ 250, Vo [Eu + 205 6]
3V, 3>, Vup? TV, > Vor?

Smaller number of quanta (smaller volume and early times)

> For a large range of initial conditions (at least
one Q, # 0 or one &, < 0)

Singularity res. into quantum bounce!

Quantum bounce

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: 6 depends only on MCMF clock XO.

~11 e~ o~ 2 ~
! 0=¢6, —2i%é, — E, &,
0y

Vo (<) = i Vo g ().

> lIsotropy: 6, = py€

> Mesoscopic regime: negligible interactions.

- { Effective volume dynamics ] ~
2
( v, )2: 25, Vepusen(ol)VE = QR/E T ik ph T Vel _ 250, Vo [Eu + 205 6]
3V, 3>, Vup? TV, > Vor?

Smaller number of quanta (smaller volume and early times)

> For a large range of initial conditions (at least
one Q, # 0 or one &, < 0)

> Volume quantum fluctuations may be large!

Quantum bounce

Singularity res. into quantum bounce?

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Effective FLRW cosmological dynamics

Mean-field approximation

» Homogeneity: 6 depends only on MCMF clock XO.
0y

~l i ) 2
0=¢6, —2i%é, — E, &,

Vo (<) = i Vo g ().

> lIsotropy: 6, = py€

> Mesoscopic regime: negligible interactions.

- { Effective volume dynamics ] ~
2
( v, )2: 25, Vepusen(ol)VE = QR/E T ik ph T Vel _ 250, Vo [Eu + 205 6]
3V, 3>, Vup? TV, > Vor?

Smaller number of quanta (smaller volume and early times)

> For a large range of initial conditions (at least > x® may not coincide with ()2{))
one Q, # 0 or one &, < 0)

anymore!

o)

» Clock quantum fluctuations may be large!
20 N .
> Volume quantum fluctuations may be large! > () # <H0>axu (higher moments # 0).

T0

Quantum bounce

Singularity res. into quantum bounce? Effective rel. framework may break down!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143
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Emergent inflation and phantom dark energys
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Ladstatter, LM, Oriti (to appear); Oriti, Pang 2105.03751.
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Emergent inflation and phantom dark energys

1)
<
2
=]
3]
<]
e
3]
S
<

notation: ¢ - % —/ dQ o9
/Q
Tensor (modulus) Cellular (phase)

). gUHD/2 | (+D)/2

(m) 5 (m

Trvw [e, ] ~ Vw

» Highly symmetric, studied in renormalization.
»  Modulus-only dependence after o-isotropy.
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Emergent inflation and phantom dark energys
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notation: ¢ - % —/Q(m oY
Tensor (modulus) Cellular (phase)
m - —(I+1)/2 I+1)/2 -
oY) Les @] ~ V- @UF0/2 . 0/ T Lo, @l ~ VS o

» Highly symmetric, studied in renormalization. » Admit a more clear geometric interpretation.

1+1

»  Modulus-only dependence after o-isotropy. » Modulus&phase dependence after o-isotropy.
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Emergent inflation and phantom dark energys

notation: ¢ - 1 —/ dQ oy
Ja
@ Tensor (modulus) Cellular (phase)
S
B - —(1+1)/2 +1)/2 - +1
© Tr(&"w), [, 0] ~ VI - gHD/2 . 1/ Tr(\’;’)w o, 8] ~ V¥ - o
s
g » Highly symmetric, studied in renormalization. » Admit a more clear geometric interpretation.
> Modulus-only dependence after o-isotropy. » Modulus&phase dependence after o-isotropy.
Phantom Dark Energy
é > Consider / = 5 modulus interactions at very late times, but include a subdominant spin v':
<
g w=3-2W")/(V)~-1-b/V, b>0.

> Universe effectively dominated by (non-pathologic) emergent phantom dark energy.
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Emergent inflation and phantom dark energys

notation: ¢ - ) 7/ dQ ey
JQ

@ Tensor (modulus) Cellular (phase)
S
= - —(I+1)/2 +1)/2 - I+1
g T Lo, @] ~ VAT - @72 ol T Lo, @l ~ VS o
e
,3 » Highly symmetric, studied in renormalization. » Admit a more clear geometric interpretation.
B > Modulus-only dependence after o-isotropy. » Modulus&phase dependence after o-isotropy.
Phantom Dark Energy
l_f » Consider / = 5 modulus interactions at very late times, but include a subdominant spin v':
°
. w=3-2W")/(V)~-1-b/V, b>0.
> Universe effectively dominated by (non-pathologic) emergent phantom dark energy.
Emergent Inflation PRE; iz
~ 11 i ) 2 =/ RY
0=¢5, —2ifte6, — E, 6, — A5,
b
[+
=
Q.
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Emergent inflation and phantom dark energys

notation: ¢ - ) 7/ dQ ey
JQ

@ Tensor (modulus) Cellular (phase)
S
= - —(1+1)/2 +1)/2 - I+1
g T Lo, @] ~ VAT - @72 ol T Lo, @l ~ VS o
e
,3 » Highly symmetric, studied in renormalization. » Admit a more clear geometric interpretation.
B > Modulus-only dependence after o-isotropy. » Modulus&phase dependence after o-isotropy.
Phantom Dark Energy
l_f » Consider / = 5 modulus interactions at very late times, but include a subdominant spin v':
°
. w=3-2W")/(V)~-1-b/V, b>0.
> Universe effectively dominated by (non-pathologic) emergent phantom dark energy.
Emergent Inflation PRE; iz
~ 11 i ) 2 =/ RY
0=¢5, —2ifte6, — E, 6, — A5,
b
[+
= . . =/
& » Initial conditions: | =5, Re[\,,G,,] close to

a maximum, 6,, determines slow-roll.

> Long-lasting quasi-deSitter phase!

Ladstatter, LM, Oriti (to appe:
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Emergent inflation and phantom dark energys

Interactions

Modulus

Phase

notation: ¢ - ) 7/ dQ ey
JQ

Tensor (modulus) Cellular (phase)
m - {0 I . I
) Lo @] ~ VAT - U721/ T Lo, @l ~ VI - o'

Highly symmetric, studied in renormalization. » Admit a more clear geometric interpretation.

>
» Modulus-only dependence after o-isotropy. » Modulus&phase dependence after o-isotropy.
Phantom Dark Energy
» Consider / = 5 modulus interactions at very late times, but include a subdominant spin v':
w=3-2W")/(V)~-1-b/V, b>0.
> Universe effectively dominated by (non-pathologic) emergent phantom dark energy.
Emergent Inflation PRE; ”VHNAR
0=25! - 2ift05], — E260 — Aub v
v 00, v T V0,
Slow-roll phase Graceful exit and fast oscillations
> Initial conditions: / =5, Re[AUgL] close to  » Natural slow-roll breakdown: fast oscillations.
a maximum, ¢, determines slow-roll. > Interactions washed away on average.
> Long-lasting quasi-deSitter phase! > Graceful exit: matter (clock) dominated phase!

Ladstatter, LM, Oriti (to appe:

Luca Marchetti Emergent Cosmology fi



Effectively
Collective relationally
localized

Quantum theory Inhomogeneous
Observable .
GFT + 4 causally cou- cosmologies

s averages
pled frame scalars x Scalar isotropic pert.

(O)a ) ‘
+ MCMF matter ¢ with fields (x", ¢)

Slightly
entangled




Cosmic inhomogeneities from quantum gravity e

Setting

tanglement

Classical Quantum
» 4 MCMF reference fields (XO, X"), » Beyond condensates: time- and spacelike tetrahedra

» 1 MCMF matter field ¢ dominating the
energy-momentum budget and slightly
relationally inhomogeneous wrt. '

Inhomogeneities = Quantum Entanglement
|A;x) = Npel O+l @F+50@1_+6V+, @3= 0) .

42; Gielen, Mickel 2211.04500.

Emergent Cosmology from QG




tanglement

Cosmic inhomogeneities from quantum gravity e

Classical Quantum

» 4 MCMF reference fields (XO, X"), » Beyond condensates: time- and spacelike tetrahedra.

» 1 MCMF matter field ¢ dominating the
energy-momentum budget and slightly &
i 5 — RI_

relationally inhomogeneous wrt. ' |A;x) = Nae

Inhomogeneities = Quantum Entanglement
HIL @F+5ORT_ +5W+l, @5 )

Setting

Classical dynamics with trans-Planckian QG effects

> Matter §¢pgrr and “curvature-like” (isotropic)
pert. R emerge from to two-body relatlonal
nearest-neighbor QG correlations (5¢ SV, 6= ).

R R o4
" 2.4 _ a‘k 00
8¢ + Ka*Sarr = (M‘)J(,[o], VilL
300 2 4.5 a’k 2 T 8008 /\ An
= ([ == ~ [ 2 0.000
Reer + k"a Rerr <Mp\ )J/R,[O] ) S :§§§§ \/ \/V

-0.004
-5

HaO

Top: Rerr (blue) and Rgr (dashed red) for
k/Mp = 10°. Bottom: their difference AR.

» Trans-Planckian QG corrections to the dynamics
of scalar isotropic perturbations.
v/ Remarkable agreement with GR at larger scales.

Oriti 2112.12677; Jercl 42; Gielen, Mickel 2211.04500.
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Collective Relational

Quantum theory Observable
GFT causally cou- averages

pled with scalar fields (O)y

Cosmological

Perturbations

Background

CERNIANIRN

>

>

B

Pert. = QG entanglement.
Good classical limit.
Trans-Planckian QG effects.

Phenomenological
implementation in SCM.

Early times: initial conditions
and bounce?

Classicalization problem?

More relational observables.

Cosmology

FLRW background
+ scalar isotropic

perturbations

Singularity resolution;
Quantum-geom. acceleration
(inflation, dark energy);
Classical limit;

More matter components?

Impact on cosmic tensions?
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