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The GFT approach to quantum gravity

GFTs are QFTs of atoms of spacetime.

▶ Take seriously the idea of a microscopic structure of spacetime.

▶ Access to powerful field theoretic methods (Fock space, RG. . . )!

Group Field Theory Quanta y

▶ GFT quanta are atoms of quantum 3-space, i.e. tetrahedra.

▶ Quantum numbers associated with fields discretized over a

tetrahedron (ga = gravitational, Φ = scalar fields).

▶ GFT field domain is a group manifold G : not spacetime!

Group Field Theory Processes

▶ GFT Feynman diagrams Γ (QG processes) are associated with

4d triangulated (pseudo-)manifolds.

▶ ZGFT = discrete matter-gravity path-integral.

▶ GFT interactions are combinatorially non-local.

φ
†(ga,Φ) |0⟩ =

Bgg4Bg

g1

Bgg2Bg

g3

Φ

Γ
(3d)
=

Oriti 0912.2441; Oriti 1110.5606; Oriti 1408.7112; Krajewski 1210.6257; Oriti 1807.04875; Gielen, Sindoni 1602.08104; . . .
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Collective states and observables
C
o
lle

ct
iv
e
st
a
te
s (ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |σ⟩ = Nσ exp
[
σ · φ̂†

]
|0⟩

C
o
ar
se
-g
ra
in
in
g

Macroscopic dynamics = mean-field approximation

▶ GFT dynamics is captured by quantum equations of motion, or Schwinger-Dyson (SD) equations.

▶ Simplest SD equations are the averaged quantum equations of motion: ⟨δSGFT/δφ̂⟩ψ = 0.

E.g.:

〈
δSGFT[φ̂, φ̂†]

δφ̂(ga, xα)

〉
σ

= [K · σ](ga, xα) +
δV [φ, φ∗]

δφ∗(ga, xα)

∣∣∣∣
φ=σ

= 0 .

▶ Equivalent to a mean-field (saddle-point) approximation of ZGFT.

Macroscopic quantities = Averaged one-body operators

▶ Collective behavior is captured by (second quantized) one-body operators Ô, such as

N̂ = φ
† · φ̂ , Φ̂ = φ̂

† · (Φφ̂) , V̂ = φ̂
† · V [φ̂] .

▶ Associate macroscopic quantities with averages ⟨Ô⟩ψ .

E.g.: Nσ ≡ ⟨N̂⟩σ = σ
∗ · σ , Φσ ≡ ⟨Φ̂⟩ = σ

∗ · (Φσ) , Vσ ≡ ⟨V̂ ⟩ = σ
∗ · V [σ] .

notation: φ · ψ =

∫
Ω
dΩφψ

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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N̂ = φ
† · φ̂ , Φ̂ = φ̂

† · (Φφ̂) , V̂ = φ̂
† · V [φ̂] .

▶ Associate macroscopic quantities with averages ⟨Ô⟩ψ .
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Relational peaking
C
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s (ciaoGFT coherent states

▶ From the GFT perspective, continuum geometries are associated to large number of quanta.

▶ Look for states that can accommodate an infinite number of quanta

E.g.: coherent states |σ⟩ = Nσ exp
[
σ · φ̂†

]
|0⟩
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Macroscopic quantities = Averaged one-body operators

▶ Collective behavior is captured by (second quantized) one-body operators Ô, such as

N̂ = φ
† · φ̂ , Φ̂ = φ̂

† · (ϕφ̂) , V̂ = φ̂
† · V [φ̂] .

▶ Associate macroscopic quantities with averages ⟨Ô⟩ψ .

E.g.: Nσ ≡ ⟨N̂⟩σ = σ
∗ · σ , Φσ ≡ ⟨Φ̂⟩ = σ̂

∗ · (ϕσ) , Vσ ≡ ⟨V̂ ⟩ = σ
∗ · V [σ] .

L
o
ca

liz
a
ti
o
n

Relational peaking(

▶ Constructing relational observables in GFT is not easy (QFT with no continuum intuition).

▶ Relational localization implemented at an effective level on observable averages.

E.g.: χ
µ frame and |σ⟩ :

σx = (fixed peaking function ηx ) × (reduced wavefunction σ̃) ,

Oσ(x) ≡ ⟨Ô⟩σx ≃ O[σ̃]|χµ=xµ , ⟨χ̂µ⟩σx ≃ xµ

notation: φ · ψ =

∫
Ω
dΩφψ

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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E.g.: Nσ ≡ ⟨N̂⟩σ = σ
∗ · σ , Φσ ≡ ⟨Φ̂⟩ = σ̂

∗ · (ϕσ) , Vσ ≡ ⟨V̂ ⟩ = σ
∗ · V [σ] .

L
o
ca

liz
a
ti
o
n

Relational peaking(
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Ω
dΩφψ

LM, Oriti, Pithis, Thürigen 2211.12768 ; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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(ciaoMean-field approximation

▶ Homogeneity: σ̃ depends only on MCMF clock χ
0.

▶ Isotropy: σ̃υ ≡ ρυe
iθυ (υEPRL ∈ N/2, υBC ∈ R).

▶ Mesoscopic regime: negligible interactions.

0 = σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃,

Vσ(x
0) =

∑∫
υ
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(ciaoLarge number of quanta (large volume and late times) (

Volume quantum fluctuations under control.

▶ If µ2
υ is mildly dependent on υ (or one υo is

dominating) and equal to 3πG

(V ′
σ/3Vσ)

2 ≃ 4πG/3 flat FLRW

Matching with GR (in harmonic gauge)!

x0 = ⟨χ̂0⟩σx0
, clock quantum fluct. ≃ 0.

⟨Π̂0⟩σx0
= ⟨Ĥσ⟩σx0

(higher moments ≃ 0).

Effective relational framework reliable!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143.
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Smaller number of quanta (smaller volume and early times)

▶ For a large range of initial conditions (at least

one Qυ ̸= 0 or one Eυ < 0)

Singularity res. into quantum bounce!

▶ x0 may not coincide with ⟨χ̂0⟩σx0
anymore!

▶ Clock quantum fluctuations may be large!

▶ ⟨Π̂0⟩σx0
̸= ⟨Ĥσ⟩σx0

(higher moments ̸= 0).

Effective rel. framework may break down!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091; Gielen, Polaczek 1912.06143.
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Emergent inflation and phantom dark energys
In
te
ra
ct
io
n
s Tensor (modulus) Cellular (phase)

Tr
(m)
Vγl

[φ, φ̄] ∼ V(m)
γl

· φ̄(l+1)/2 · φ(l+1)/2

▶ Highly symmetric, studied in renormalization.
▶ Modulus-only dependence after σ-isotropy.

Tr
(p)
Vγl

[φ, φ̄] ∼ V(p)
γl

· φl+1

▶ Admit a more clear geometric interpretation.
▶ Modulus&phase dependence after σ-isotropy.

M
o
d
u
lu
s

Phantom Dark Energy(

▶ Consider l = 5 modulus interactions at very late times, but include a subdominant spin υ
′:

w = 3 − 2(VV ′′)/(V ′)2 ≃ −1 − b/V , b > 0 .

▶ Universe effectively dominated by (non-pathologic) emergent phantom dark energy.

P
h
a
se

Emergent Inflation

0 = σ̃
′′
υ − 2iπ̃0σ̃

′
υ − E 2

υσ̃υ − λυ ¯̃σ
l
υ

Slow-roll phase Graceful exit and fast oscillations
▶ Initial conditions: l = 5, Re[λυ ¯̃σ

l
υ ] close to

a maximum, θυ determines slow-roll.

▶ Long-lasting quasi-deSitter phase!

▶ Natural slow-roll breakdown: fast oscillations.
▶ Interactions washed away on average.
▶ Graceful exit: matter (clock) dominated phase!

notation: φ · ψ =

∫
Ω
dΩφψ

Ladstätter, LM, Oriti (to appear); Oriti, Pang 2105.03751.
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Quantum theory

GFT + 4 causally cou-

pled frame scalars χ
µ

+ MCMF matter ϕ

Inhomogeneous

cosmologies

Scalar isotropic pert.

with fields (χµ, ϕ)

Observable
averages

⟨Ô⟩∆

Slightly

entangled

Collective

Effectively

relationally

localized



Cosmic inhomogeneities from quantum gravity entanglement
yS

et
ti
n
g
y

(ciaoClassical( (ciaoQuantum(

▶ 4 MCMF reference fields (χ0
, χ

i ),

▶ 1 MCMF matter field ϕ dominating the

energy-momentum budget and slightly

relationally inhomogeneous wrt.χi .

▶ Beyond condensates: time- and spacelike tetrahedra.

Inhomogeneities = Quantum Entanglement

|∆; x⟩ = N∆e
σ̂⊗I−+I+⊗τ̂+δ̂Φ⊗I−+δ̂Ψ+I+⊗δ̂Ξ |0⟩ .

E
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(ciaoClassical dynamics with trans-Planckian QG effects

▶ Matter δϕGFT and “curvature-like” (isotropic)

pert. R̃ emerge from to two-body relational

nearest-neighbor QG correlations (δ̂Φ, δ̂Ψ, δ̂Ξ).

δϕ
′′
GFT + k2a4δϕGFT =

( a2k

Mpl

)
jϕ[ϕ̄] ,

R̃′′
GFT + k2a4R̃GFT =

( a2k

Mpl

)
jR̃[ϕ̄] ,

▶ Trans-Planckian QG corrections to the dynamics

of scalar isotropic perturbations.

✓ Remarkable agreement with GR at larger scales.
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Top: R̃GFT (blue) and R̃GR (dashed red) for

k/MPl = 102. Bottom: their difference ∆R̃.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442; Gielen, Mickel 2211.04500.
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Quantum theory

GFT causally cou-

pled with scalar fields

Cosmology

FLRW background

+ scalar isotropic

perturbations

Observable
averages

⟨Ô⟩ψ

Cosmological

Collective Relational

✓ Pert. = QG entanglement.

✓ Good classical limit.

✓ Trans-Planckian QG effects.

Phenomenological

implementation in SCM.

Early times: initial conditions

and bounce?

Classicalization problem?

More relational observables.

✓ Singularity resolution;

✓ Quantum-geom. acceleration

(inflation, dark energy);

✓ Classical limit;

More matter components?

Impact on cosmic tensions?.b
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