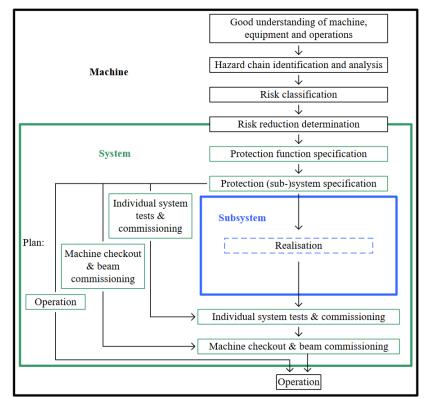


The MPE group supports the operation of CERN's accelerators by developing, maintaining and operating state-of-the art hardware and software technologies for magnet circuit protection and interlock systems.

Energy stored in Magnet Powering System and Beam of the LHC

M.Zerlauth - CAS 2021

Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger


Protection System Life-Cycle

Critical systems follow defined life-cycle

- Ensures that risks are mitigated
- Inspired by IEC 61508 and adapted for CERN context

Slides show sub-set of life-cycle on examples of

- Reliability analysis
- Reliable firmware & software development

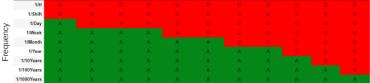
Todd, B.; Kwiatkowski, M.


Risk and Machine Protection for Stored Magnetic and Beam Energies

Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger

3

Reliability Analysis

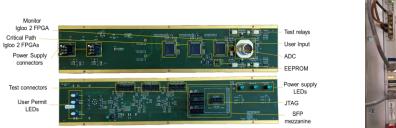

Well-established process. Areas of research interest:

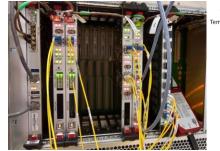
- Integrating critical soft-/firmware assessment into the overall reliability assurance process
- Formalize reliability modeling process further to allow for automatic model generation and property checking.
- Maintaining & re-using system reliability models across the life cycle with monitoring and test data for early corrective actions

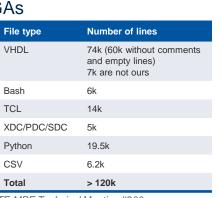
LHC Risk Matrix – common definition of reliability targets:

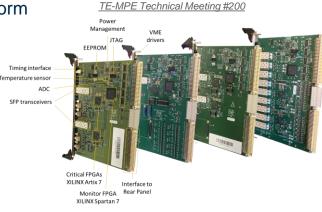
Recovery time

In-house developed open-source MC simulation tool:


Reliability toolkit (FTA, RBD, FMECA, Weibull, ...):

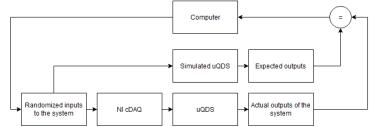

	D	Description	Effects defined	Contributors defined	Causes	Contributors	Effects (immediate)	
Þ	3.7.1	IC10 - Input Open	Yes	N/A	Random Failure		Blind Failure Blind Failure	
	3.7.2	IC10 - Output Open	Yes	N/A	Random Failure		False Dump False Dump	
	3.7.3	IC10 - Supply Open	Yes	N/A	Random Failure		False Dump False Dump	
	3.7.4	IC10 - Output Stuck Low	Yes	N/A	Random Failure		False Dump False Dump	
	3.7.5	IC10 - Output Stuck High	Yes	N/A	Random Failure		False Dump False Dump	

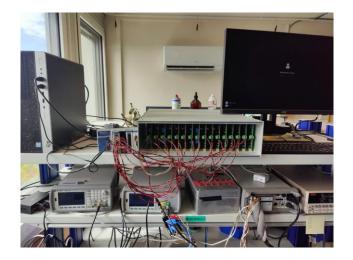



Development and testing of critical firmware – Example of the Beam Interlock System

- The BIS is the backbone of the machine protection system at CERN based on FPGAs
- Numerous firmware images to develop, build, test and maintain
- Each BIS board implements continuous integration based on GitLab CI/CD
- Heavy use of dockers to simulate and synthesize the code
- Several jobs are run for performing functional tests
 - Linter (static checks on the VHDL code)
 - Simulation (unit and top-level tests)
 - Synthesis
- In addition, system-level tests are run with CI on a dedicated test platform
 - 108h of automated tests per week

A. Colinet et al., "Testing aspects of the Beam Interlock System prior to installation in the accelerator", IPAC24

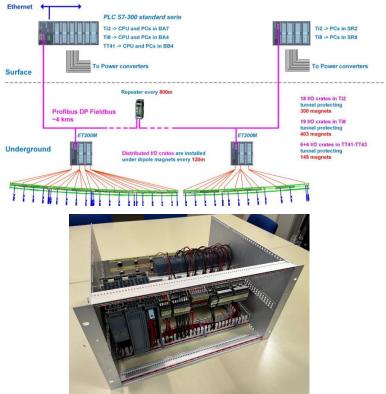



Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger

Development and testing of critical firmware – Example of the Quench Detection System (QDS)

The QDS measures voltages across superconducting magnet coils to detect when superconductivity is lost.

- Essential part of superconducting magnet protection
- Performs real time digital signal processing on FPGAs (filters, gain/offset correction)
 - Neural Networks with formally verified properties may prove interesting for real time digital signal processing task in future
- Large parameter space due to continuous inputs and detection thresholds → testing based on randomized sampling
 - Testing of every protection scheme for the various magnets, using a NI cDAQ to set the inputs to the system and read its outputs.
 - A python script generates a Montecarlo simulation of the system: it randomizes a set of (continuous) inputs and compares the outputs with the expected results. During the test we also randomise the protection parameters (voltage thresholds, etc) to sample the parameter space.
 - Critical firmware is modular & requires a modular testbench.



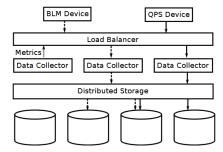
G. Martin Garcia

Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger

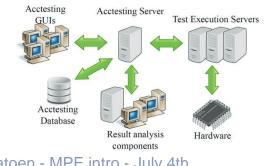
Development of critical PLC code – Warm and Cold Magnet Interlock Controllers (WIC/PIC)

- "Slow" interlock systems often based on PLCs
 - Based on well-defined state machines
 - Strict configuration process from a common database
- Development of critical code for new generation of WIC/PIC systems in collaboration with BE-ICS
 - Apply formal methods (PLCverif)

Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger


Software Development - Diagnostics and Automated Testing of Deployed Protection Systems

Software development based on high code-quality standards and extensive testing:


- Static code analysis performed with SonarQube
- Different levels of testing
 - unit tests to ensure the correctness of each unit of code
 - integration tests to validate the integration of components together
 - user acceptance tests to validate features
- Use of staging environments and a hardware testbed copying a sector of the LHC

Additional model and property checking tools may be interesting to explore.

PostMortem: ensure integrity of protection systems after every LHC beam dump

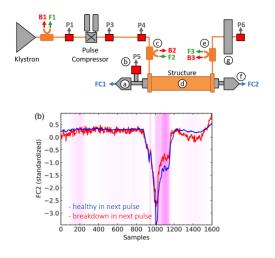
AccTesting: automatize repeating machine commissioning steps

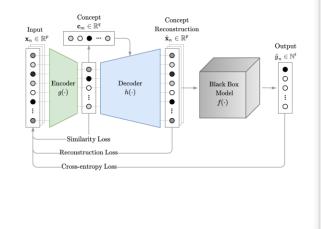
J.C. Garnier

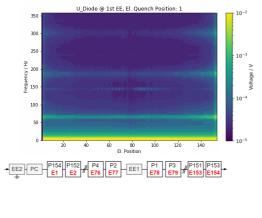
Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger

- The MPE group provides state-of-the art hardware (FPGAs & PLCs) and software technologies for magnet circuit protection and interlock systems.
- Critical systems follow a protection life cycle, which includes a top-down & bottom-up reliability analysis
- Reliability of critical firmware and software is ensured via extensive testing at multiple levels and environments, staging/CI & validation.
- Generally interested to test additional software modeling and verification tools

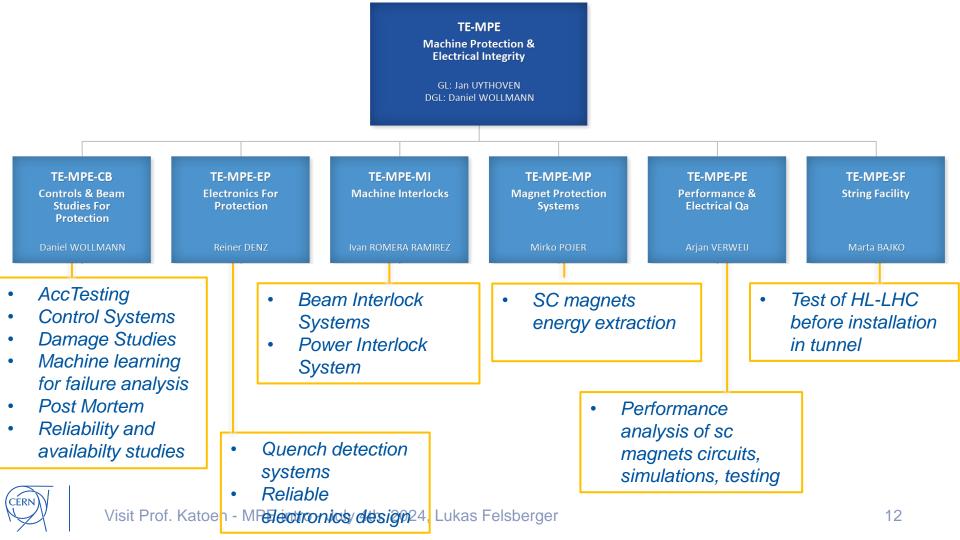
Back-up slides




Visit Prof. Katoen - MPE intro - July 4th, 2024, Lukas Felsberger


Interpretable Machine Learning for Predictive Maintenance

Example or Prototype? Learning Concept-Based Explanations in Time-Series Interpretable Anomaly Detection in the LHC Main Dipole Circuit with Nonnegative Matrix Factorization



C. Obermair

Aim is to reduce unplanned downtime of systems and improve diagnostics (faster repair).

Reliability and Availability Working Group

RAWG is an advisory body in the reliability domain

- Promote common tools and standards
- Accelerator Fault Tracking
- Building internal and external collaborations

