

BE-CSS and SY-ABT activities

A. Huschauer, V. Kain, <u>M. Schenk</u>, F. Velotti on behalf of the extended EPA & accelerator communities

Potential collaboration synergies between CERN & MOVES in Formal Methods

04. July 2024

Intro

- ML & NNs for applications in beam operations and beam transfer
- Dealing with a very diverse landscape of problems & data
 - Controllers: parameter optimisation & drift compensation (on-demand or continuous), feed-backs / feed-forward corrections, scheduling
 - > **Monitoring:** forecasting, virtual / enhanced diagnostics, anomaly detection
 - > **Other:** project on LLMs (knowledge retrieval)
- No "one size fits all"
 - (Meta-)RL, BO, model-predictive control (GP-MPC), physics-informed methods, transformers, numerical optimisers (gradient free) & classical control often in combination with simulations or surrogate models
 - > Anomaly detection: typically auto-encoders, but also SVMs, isolation forests, ...
 - ➤ Challenges: no online training (sample efficiency) → sim2real gap, exploitation vs exploration / continual learning, running safely & reliably 24/7, lack of beam observation / diagnostics, ...
- Remarks on safety
 - > Above everything, we have an independent machine protection system^(*)
 - > Controllers typically work in **bounded parameter space**
 - Can still have undesirable consequences if controllers unsafe: degraded beam quality, increased particle loss and radio-activation, machine downtime

2

^(*)*ML-free*

Examples using classical control

PS Multi-Turn Extraction

- > Automatic drift compensation
- Successfully tested and tuned in MDs
- Hybrid agent: continuous controller interleaved with optimizer when far off

A. Huschauer, M. Schenk, C. Uden

Trajectory steering framework *using acc-geoff4ucap*

- Versatile objective
 Beam position, beam loss, ...
- Various algorithms incl. Micado / SVD, numerical opt.
- > In 2024: PS2SPS, SPS2LHC

G. Trad, F. Velotti

PS EAST: fixed target beam steering

- PID regulator on UCAP
- Simple & effective
- Similar controller for TL towards AD

J. McCarthy

Examples using classical control

 \geq

Trajectory steering fra *using acc-geoff4ucap*

- Versatile objective
 Beam position, beam loss, ...
- Various algorithms incl. Micado / SVD, numerical opt.
- > **In 2024:** PS2SPS, SPS2LHC

Hold of the second seco

Generally easier to validate than ML-based methods

Bounded parameter spaces

Successfully tested and tuned in MDs

Automatic drift compensation

PS Multi-Turn Extraction

- Predictable / deterministic behaviour
- Can still run into unforeseen situations over longer time scales

teering

PID regulator on **UCAP**

Similar controller for TL

Simple & effective

towards AD

J. McCarthy

Examples using RL

PS

- Correct RF phase & voltage for uniform bunch splitting (LHC beams)
- > Multi-agent (SAC) & CNN for initial guess
- Successful sim2real transfer
- If things go wrong: degraded beam
- A. Lasheen, J. Wulff

PS to SPS

- Adjust fine delays of SPS injection kicker
- RL agent (PPO) trained on
 data-driven dynamics model
- If things go wrong: beam loss, activation

M. Remta, F. Velotti

LINAC3 / LEIR

- Achieve optimal injection into LEIR
- RL state based on β-VAE-encoded
 Schottky spectra
- Agent trained on data-driven dynamics model
- If things go wrong: beam loss, activation, equipment trips

V. Kain, N. Madysa, B. Rodriguez

S. Hirlaender, V. Kain

AWAKE

- Steer electron beam in AWAKE line
- Test-bed for different RL algorithms & sim2real transfer
- Large improvements in sample efficiency (Meta RL)
- If things go wrong: not critical

Examples using RL

LINAC3 / LEIR

- > Achieve **optimal**
- RL state based on p-vac-encoded Schottky spectra
- Agent trained on data-driven dynamics model
- If things go wrong: beam loss, activation, equipment trips

PS to SPS

- **RL training "by definition" unsafe** (trial and error learning) there are some ways to add safety to RL ...
- **RL policies typically hard to validate:** true for all NNs, even if RL policy networks are typically small *are all actions safe for all possible states?*
- For us
 - Usually no online training possible (safer)
 - Instead sim2real transfer either using simulation or data-driven dynamics model (might be safety issue, depending on sim2real gap)
 - Continuous state-action spaces

V. Kain, N. Madysa, B. Rodriguez

S. Hirlaender, V. Kain

eam in

- **Test-bed** for different RL algorithms & sim2real transfer
- Large improvements in sample efficiency (Meta RL)
- If things go wrong: not critical

Example using BO Spill noise cancellation

- SPS slow-extracted beam has 50 Hz & 100 Hz noise originating from quadrupole power converter ripple
- Continuous controller for active noise cancellation
 - Adaptive Bayesian optimisation
 - Spatio-temporal Gaussian Process model
 - Low dimensional: two spatial parameters + time

Challenges

- Exploration vs exploitation
- Jumping to bounds occasionally under control with proximal biasing
- Time dependence: model updates on-the-fly, has sometimes ended up in "degenerate state", but does usually recover
- If things go wrong: degraded beam and potentially time lost for physics experiments
- **N.B.:** there is SafeOpt for safety-critical BO

25

20

Example using PhyLSTM / transformers

Hysteresis & eddy-current compensation

- Context
 - Multipole magnets define beam trajectory, size, oscillation, and some aspects of collective beam behaviour
 - Many CERN accelerators are multi-user machines each with a different magnetic cycle
 - Magnetic hysteresis introduces change in beam dynamics for identical cycles which is problematic in many ways
- Method & challenges
 - Feed-forward correction on magnetic strength to provide reproducible fields
 - PhyLSTM & Transformer models trained on dipole data
 - Generalisability & accuracy of model
- Safety aspect
 - > **PhyLSTM:** typically well behaved, even when extrapolating
 - Transformer-based models: hard to validate "for all possible inputs" / to some degree unpredictable
 - Add safeguard at model output to limit allowed change of magnetic field

A. Lu, V. Kain, V. Di Capua

Equipment-related ML

• Define new paradigm of **smart and agile equipment** *e.g. adding context-awareness: beam parameters, machine state, etc.*

automate setup, fault analysis, and recovery

- Ongoing pilot studies
 - Potentially safety-critical: mix-in ML models to decide whether equipment can be reset automatically e.g. anomaly detection for vacuum interlock spikes on kicker magnet using VAE
 - Adding safety: e.g. Conv AE for SPS beam dump anomaly detection, kicker magnet temperature forecasting
- Systematic studies in that direction have started relatively recently
 - Validation / safety could become more relevant in the coming years

Equipment-related ML

Temperature forecasting & pressure anomalies

• Example 1

Kicker magnet temperature forecasting

- Kicker temperatures limit SPS high-intensity operation (beam-induced heating)
- Goal: create temperature forecast using online measurement, current machine operation and future planning
- Method: Light Gradient Boosting Machine and using beam-induced heating equation

• Example 2

Auto-reset of SPS kicker following vacuum interlock

- Goal: correctly classify vacuum "spikes" to avoid unnecessary downtime
- > **Method:** VAE trained on historical time-series data
- Auto-reset and automatic e-mail with diagnostics plots to experts

Equipment-related ML *Beam dump system failure*

- SPS beam dump system (SBDS)
 - > Machine-safety critical
 - > Malfunctioning may result in **unwanted activation or damage**
- Goal: detect anomalous beam dump patterns from BTV images
 - Challenges: unlabelled data, be robust to both seen and unseen anomalies, high variability due to other effects, ...
 - Heavily biased towards "normal" images: train convolutional AE and use reconstruction loss to identify anomalies
- Results
 - > Anomalous SBDS behaviour: ~5 20 x higher reconstruction error
 - > Additional info on localisation of error (helpful to diagnose)
 - > Deployed and running operationally
- Safety aspect
 - Adds additional diagnostic and safety check for the beam dump kickers
 - > At the moment **just monitoring**

