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• ML & NNs for applications in beam operations and beam transfer

• Dealing with a very diverse landscape of problems & data

➢ Controllers: parameter optimisation & drift compensation (on-demand or
continuous), feed-backs / feed-forward corrections, scheduling

➢ Monitoring: forecasting, virtual / enhanced diagnostics, anomaly detection

➢ Other: project on LLMs (knowledge retrieval)

• No “one size fits all”

➢ (Meta-)RL, BO, model-predictive control (GP-MPC), physics-informed methods, transformers, numerical 
optimisers (gradient free) & classical control
often in combination with simulations or surrogate models

➢ Anomaly detection: typically auto-encoders, but also SVMs, isolation forests, …

➢ Challenges: no online training (sample efficiency) → sim2real gap, exploitation vs exploration / continual learning, 
running safely & reliably 24/7, lack of beam observation / diagnostics, …

• Remarks on safety

➢ Above everything, we have an independent machine protection system(*)

➢ Controllers typically work in bounded parameter space

➢ Can still have undesirable consequences if controllers unsafe: degraded beam quality, increased particle loss
and radio-activation, machine downtime

Intro

(*)ML-free



Examples using classical control

➢ Automatic drift compensation

➢ Successfully tested and tuned in MDs

➢ Hybrid agent: continuous controller 
interleaved with optimizer when far off

PS Multi-Turn Extraction
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➢ Versatile objective
Beam position, beam loss, …

➢ Various algorithms
incl. Micado / SVD, numerical opt.

➢ In 2024: PS2SPS, SPS2LHC

Trajectory steering framework
using acc-geoff4ucap

G. Trad, F. Velotti

PS EAST: fixed target beam steering

➢ PID regulator on UCAP

➢ Simple & effective

➢ Similar controller for TL 
towards AD

J. McCarthy

A. Huschauer, M. Schenk, C. Uden
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• Generally easier to validate than ML-based methods

➢ Bounded parameter spaces

➢ Predictable / deterministic behaviour

➢ Can still run into unforeseen situations over
longer time scales



Examples using RL

➢ Correct RF phase & voltage for uniform 
bunch splitting (LHC beams)

➢ Multi-agent (SAC) & CNN for initial guess

➢ Successful sim2real transfer

➢ If things go wrong: degraded beam

PS

➢ Achieve optimal injection into LEIR

➢ RL state based on β-VAE-encoded 
Schottky spectra

➢ Agent trained on data-driven 
dynamics model

➢ If things go wrong: beam loss, 
activation, equipment trips

LINAC3 / LEIR

V. Kain, N. Madysa, B. Rodriguez

➢ Adjust fine delays of SPS 
injection kicker

➢ RL agent (PPO) trained on 
data-driven dynamics model

➢ If things go wrong: beam 
loss, activation

PS to SPS

M. Remta, F. Velotti
A. Lasheen, J. Wulff

➢ Steer electron beam in 
AWAKE line

➢ Test-bed for different RL 
algorithms & sim2real transfer

➢ Large improvements in 
sample efficiency (Meta RL)

➢ If things go wrong: not critical

AWAKE

S. Hirlaender, V. Kain
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• RL training “by definition” unsafe (trial and error learning)
there are some ways to add safety to RL … 

• RL policies typically hard to validate: true for all NNs, even if RL policy 
networks are typically small
are all actions safe for all possible states?

• For us
➢ Usually no online training possible (safer)
➢ Instead sim2real transfer either using simulation or data-driven dynamics 

model (might be safety issue, depending on sim2real gap)
➢ Continuous state-action spaces



Spill noise cancellation
Example using BO

• SPS slow-extracted beam has 50 Hz & 100 Hz noise 
originating from quadrupole power converter ripple

• Continuous controller for active noise cancellation

➢ Adaptive Bayesian optimisation

➢ Spatio-temporal Gaussian Process model

➢ Low dimensional: two spatial parameters + time

• Challenges

➢ Exploration vs exploitation

➢ Jumping to bounds occasionally
under control with proximal biasing

➢ Time dependence: model updates on-the-fly, has 
sometimes ended up in “degenerate state”, but does 
usually recover

• If things go wrong: degraded beam and potentially 
time lost for physics experiments

• N.B.: there is SafeOpt for safety-critical BO

Data GP prediction



Hysteresis & eddy-current compensation

• Context

➢ Multipole magnets define beam trajectory, size, oscillation, and 
some aspects of collective beam behaviour

➢ Many CERN accelerators are multi-user machines each with a 
different magnetic cycle

➢ Magnetic hysteresis introduces change in beam dynamics for 
identical cycles which is problematic in many ways

• Method & challenges

➢ Feed-forward correction on magnetic strength to provide 
reproducible fields

➢ PhyLSTM & Transformer models trained on dipole data

➢ Generalisability & accuracy of model

• Safety aspect

➢ PhyLSTM: typically well behaved, even when extrapolating

➢ Transformer-based models: hard to validate ”for all possible 
inputs” / to some degree unpredictable

➢ Add safeguard at model output to limit allowed change of 
magnetic field

A. Lu, V. Kain, V. Di Capua

Example using PhyLSTM / transformers



• Define new paradigm of smart and agile equipment
e.g. adding context-awareness: beam parameters, machine state, etc.

automate setup, fault analysis, and recovery

• Ongoing pilot studies

➢ Potentially safety-critical: mix-in ML models to decide whether equipment can be reset automatically
e.g. anomaly detection for vacuum interlock spikes on kicker magnet using VAE

➢ Adding safety: e.g. Conv AE for SPS beam dump anomaly detection, kicker magnet temperature 
forecasting

• Systematic studies in that direction have started relatively recently

➢ Validation / safety could become more relevant in the coming years

Equipment-related ML



Temperature forecasting & pressure anomalies

• Example 2
Auto-reset of SPS kicker following vacuum interlock

➢ Goal: correctly classify vacuum “spikes” to avoid 
unnecessary downtime

➢ Method: VAE trained on historical time-series data
➢ Auto-reset and automatic e-mail with diagnostics 

plots to experts

VAE for anomaly detection 
from vaccum pressure data

Equipment-related ML

• Example 1
Kicker magnet temperature forecasting

➢ Kicker temperatures limit SPS high-intensity 
operation (beam-induced heating)

➢ Goal: create temperature forecast using 
online measurement, current machine 
operation and future planning

➢ Method: Light Gradient Boosting Machine 
and using beam-induced heating equation

F.M. Velotti et al.



Beam dump system failure

• SPS beam dump system (SBDS)

➢ Machine-safety critical

➢ Malfunctioning may result in unwanted activation or damage

• Goal: detect anomalous beam dump patterns from BTV images

➢ Challenges: unlabelled data, be robust to both seen and unseen 
anomalies, high variability due to other effects, …

➢ Heavily biased towards “normal” images: train convolutional AE 
and use reconstruction loss to identify anomalies

• Results

➢ Anomalous SBDS behaviour: ~5 - 20 x higher reconstruction error

➢ Additional info on localisation of error (helpful to diagnose)

➢ Deployed and running operationally

• Safety aspect

➢ Adds additional diagnostic and safety check for the
beam dump kickers

➢ At the moment just monitoring

F. Huhn, F.M. Velotti, B. Goddard

BTV

anomalousnormal

“unseen” 
MKDH failures

Equipment-related ML


