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Intro

* ML & NNs for applications in beam operations and beam transfer

* Dealing with a very diverse landscape of problems & data
> Controllers: parameter optimisation & drift compensation (on-demand or

> Monitoring: forecasting, virtual / enhanced diagnostics, anomaly detection
> Other: project on LLMs (knowledge retrieval)

* No “one size fits all”

>

continuous), feed-backs / feed-forward corrections, scheduling

(Meta-)RL, BO, model-predictive control (GP-MPC), physics-informed methods, transformers, numerical
optimisers (gradient free) & classical control
often in combination with simulations or surrogate models

Anomaly detection: typically auto-encoders, but also SVMs, isolation forests, ...

Challenges: no online training (sample efficiency) = sim2real gap, exploitation vs exploration / continual learning,
running safely & reliably 24/7, lack of beam observation / diagnostics, ...

 Remarks on safety

>
>
>

Above everything, we have an independent machine protection system(* “IML-free
Controllers typically work in bounded parameter space

Can still have undesirable consequences if controllers unsafe: degraded beam quality, increased particle loss
and radio-activation, machine downtime



Examples using classical control
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Examples using classical control
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Examples using RL

> Correct RF phase & voltage for uniform
bunch splitting (LHC beams)

> Multi-agent (SAC) & CNN for initial guess
» Successful sim2real transfer

> If things go wrong: degraded beam

A. Lasheen, J. Wulff

LINAC3 / LEIR

> Achieve optimal injection into LEIR ,__eoded Recanstitictad

> RL state based on B-VAE-encoded 2:
Schottky spectra
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Time bin
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Sample complexity (Log Scale)

> Agent trained on data-driven
dynamics model
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> If things go wrong: beam loss,  egenybn. Feqiencyibin

Frequency bin

PS PS to SPS

> Adjust fine delays of SPS

injection kicker

> RLagent (PPO) trained on
data-driven dynamics model

> If things go wrong: beam

loss, activation

Sample complexity of different RL algorithms on the AWAKE problem
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>

TD:
Algorithms

activation, equipment trips V. Kain, N. Madysa, B. Rodriguez S. Hirlaender, V. Kain

Steer electron beam in
AWAKE line

Test-bed for different RL
algorithms & sim2real transfer

Large improvements in
sample efficiency (Meta RL)

If things go wrong: not critical



RL training “by definition” unsafe (trial and error learning)
there are some ways to add safety to RL ...
RL policies typically hard to validate: true for all NNs, even if RL policy
networks are typically small
are all actions safe for all possible states?
For us
> Usually no online training possible (safer)
> Instead sim2real transfer either using simulation or data-driven dynamics
model (might be safety issue, depending on sim2real gap)
> Continuous state-action spaces



Example using BO

Spill noise cancellation

SPS-PAGE1 Current user: LHCPILOT 6.19E4+09 11-07-23 23:45:38

SC 17 (34BP, 40.8s) DDESTECC Last update: 3 seconds ago

e SPS slow-extracted beam has 50 Hz & 100 Hz noise
originating from quadrupole power converter ripple

e Continuous controller for active noise cancellation
> Adaptive Bayesian optimisation

50 Hz 3 Na Spill Gain
92.8% 1.83E11 0.068 0.171 Low

> Spatio-temporal Gaussian Process model e NG 2 5 e 8 =
> Low dimensional: two spatial parameters + time = v
batialp - me,* i MW s 'm hal me W‘# u
* Challenges e -
> Exploration vs exploitation o |
» Jumping to bounds occasionally E— T
under control with proximal biasing
> Time dependence: model updates on-the-fly, has Data GP prediction
sometimes ended up in “degenerate state”, but does . o
usually recover i o0 B
* If things go wrong: degraded beam and potentially
time lost for physics experiments . - T
* ®
* N.B.: there is SafeOpt for safety-critical BO 1 %% o
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Example using PhyLSTM / transformers

Hysteresis & eddy-current compensation

e Context EPS-PAGEL Current use...LHCMD2 2.76E+09 06-09-22 10:30:15
5C 22 (37BP, 44 4s) DDESTECO Last update: 0 seconds ag

> Multipole magnets define beam trajectory, size, oscillation, and
some aspects of collective beam behaviour

> Many CERN accelerators are multi-user machines each with a
different magnetic cycle

> Magnetic hysteresis introduces change in beam dynamics for , ) e
identical cycles which is problematic in many ways ' ' o4a  COMPASS
. 0 28 NAG2
Phone: 77500 or 70475
o Method & Cha"enges Comments (06-5ep-2022 07:11:26)

> Feed-forward correction on magnetic strength to provide
reproducible fields —

> PhyLSTM & Transformer models trained on dipole data
> Generalisability & accuracy of model

e Safety aspect
> PhyLSTM: typically well behaved, even when extrapolating
> Transformer-based models: hard to validate "for all possible
inputs” / to some degree unpredictable

> Add safeguard at model output to limit allowed change of A. Lu, V. Kain, V. Di Capua
magnetic field




Equipment-related ML

* Define new paradigm of smart and agile equipment
e.g. adding context-awareness: beam parameters, machine state, etc.

automate setup, fault analysis, and recovery

* Ongoing pilot studies

> Potentially safety-critical: mix-in ML models to decide whether equipment can be reset automatically
e.g. anomaly detection for vacuum interlock spikes on kicker magnet using VAE

> Adding safety: e.g. Conv AE for SPS beam dump anomaly detection, kicker magnet temperature
forecasting
* Systematic studies in that direction have started relatively recently
> Validation / safety could become more relevant in the coming years



Equipment-related ML

Temperature forecasting & pressure anomalies

e Example 1
Kicker magnet temperature forecasting

>

>

Kicker temperatures limit SPS high-intensity
operation (beam-induced heating)

Goal: create temperature forecast using
online measurement, current machine
operation and future planning

Method: Light Gradient Boosting Machine
and using beam-induced heating equation
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Example 2
Auto-reset of SPS kicker following vacuum interlock

> Goal: correctly classify vacuum “spikes” to avoid
unnecessary downtime

> Method: VAE trained on historical time-series data

> Auto-reset and automatic e-mail with diagnostics
plots to experts
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Equipment-related ML

Beam dump system failure

F. Huhn, F.M. Velotti, B. Goddard

«  SPS beam dump system (SBDS) I NH I =
> Machine-safety critical . - = o
> Malfunctioning may result in unwanted activation or damage )

* Goal: detect anomalous beam dump patterns from BTV images

> Challenges: unlabelled data, be robust to both seen and unseen
anomalies, high variability due to other effects, ...

> Heavily biased towards “normal” images: train convolutional AE

and use reconstruction loss to identify anomalies

610

Results

> Anomalous SBDS behaviour: ~5 - 20 x higher reconstruction error
> Additional info on localisation of error (helpful to diagnose)
> Deployed and running operationally

» Safety aspect

” i “unseen”
> Adds additional diagnostic and safety check for the MKDH failures

beam dump kickers
> At the moment just monitoring
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