

HSE Occupational Health & Safety and Environmental Protection unit

Development of Radiation Protection Monitors and Technologies for Safety-Critical Applications

Examples of application of Formal Methods Verification at CERN

Hamza BOUKABACHE on behalf of HSE-RP 04/07/2024

Why do we need a radiation monitoring

Proton Neutron	Pion+	Pion-	Electron	Positron	Photon

When Accelerators are in operation

 \rightarrow The access to the beam tunnel and experimental areas is closed

Why do we need a radiation monitoring

Proton	Neutron	Pion+	Pion-	Electron	Positron	Photon

When Accelerators are in operation :

 \rightarrow The access to the beam tunnel and experimental areas is closed

When Accelerators are stopped :

The target became radioactive (activation)

Conclusion

Radiation & Environmental Protection Before LS2

CROME Requirement - 2015

Development of a new generation of monitoring system

This system provides:

CROME

Introduction

- Continuous real-time monitoring of ambient dose equivalent rates over 9 decades
- Alarm and interlock functionality with a probability of failure down to 10e-7
- Long term permanent and reliable data logging by linking to a SCADA supervision
- Edge computing : Powerful processing capabilities for embedded calculation
- Versatile interface
- Replacing ARCON system
- Preparing for future, RAMSES : 14 years of operation

operation

CROME Buck System

Radiation Monitor

CROME Evolution – ACCURATE ASIC

Conclusion

RAMSES System (Outsourced 2004)

Example of the MS Rack

- All the components have been individually analyzed (> 3000 references)
- Critical components have been replaced
- Redundancies
- Testability

Critical decisions are taken into the FPGA section of the SoC (38 billion of possible combinations)

- ✓ SIL2 compatible floating point calculation engine
- ✓ Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- \checkmark Direct democracy with a global triplication :

Extended testability 97% of dangerous failures

Critical decisions are taken into the FPGA section of the SoC (38 billion of possible combinations)

- ✓ SIL2 compatible floating point calculation engine
- Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- \checkmark Direct democracy with a global triplication :

Probability of dangerous failure per hour: $PFH = 9.28 \cdot 10^{-08} [fpmh]$

Functional System Safety **Design Requirements** Verification & Specification Requirements Methodology define Verification Requirements develop Coverage Model Natural Language **Reference Model Properties** input inpu Simulation using **Formal Property** verify verify HDL Design UVM Verification generate gene Verification Results & Documentation **Requirements engineers** Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Design engineers A Functional Verification Methodology for Highly Parametrizable, Continuously Operating Safety-Critical Verification engineers FPGA Designs: Applied to the CERN RadiatiOn Monitoring Electronics (CROME). Requirements trace - - >

In: Proceedings of Computer Safety, Reliability, and Security - 39th International Conference (2020)

Verification Example

0

CPLD

→ 46 properties proven in 33 seconds (estimated simulation time: 8*10¹³⁷ years)

Fault: In one particular configuration **radiation dose alert** was not triggered due to a wrong VHDL vector range

Outputs were not consistently in safe state when invalid inputs were applied (inputs are anyway checked at software level)

Exhaustively proven radiation dose alarm generation

Findings in integration/calculation algorithm : Undocumented design decision

→ Fault in rounding mechanism only if internal result was negative
 → Scenario not covered by simulation (400000 stimuli applied)

Fault that would happen after 7 years of continuous operation

- \rightarrow Found after 1 second with formal
- \rightarrow Would require > 7 years of simulation

Formal Property Verification – Model Checking

Our Co-Simulation Environment

CROME Junction Box : Configurable Interlock "router"

- **Receives interlock outputs from CROME Monitors**
- Receives interlock outputs from other RP systems on the zone
- Receives access system signals (doors status,...)
- Combines this signals through a programmable global logic (different for each zone)
- Generates global interlock signals, radiation alarm repeater signals, ...

Configuration can be generated automatically using a GUI

Input Outputs Modules • PSS SM18 Burndy IN/OUT CMPUs IN/OUT **Power Supply Modules** • DC IN / AC IN • 24V, 5V Out **Remote Status module :** Running Zyng SoC (OS+HDL) • Collecting data CJB Communication (only upstream) with WinCC OA based Supervision **Processing Module :** Running two MAX V in full redundancy Routing inputs to outputs : PSS statues, gates or beam status to CROME CMPUs Outputs of CROME CMPUs to Interlocking system **CROME CMPUs to CROME CMPUs** Combinatory logic (Decision delegation)

CROME Evolution – ACCURATE ASIC

Conclusion

CERN Radiation Monitoring Electronics

CROME Rack System for high radiation areas :

CROME Rack-mount Version at CERN at the PS Booster Plastic Air filled ionization chamber SPA6 Cable Signals + High Voltage Up to 1km

High Radiation Area

Radiation Safe Area

CROME Evolution – ACCURATE ASIC

Conclusion

CERN Radiation Monitoring Electronics

Tungsten Powder Shell (1.5-cm Thick at an inner radius of 4.0-cm)

CROME Fixed Installations

CROME Manufacturing

Introduction

Assembly and integration of CROME Bulk version

CROME

HW integration automated tests

Temperature stress validation

Temperature compensation

Stability tests

Assembly and integration of CROME Rackable version

Automated current calibration

HW integration automated tests Temperature tests of CROME **Rackable versions**

Long-term tests of CROME Rackable versions

Conclusion

Radiation & Environmental Protection After LS2 & LS3

Replacement during LS2 of

153 monitors and 70 alarm units

(532 pieces of equipment)

Replacement during LS23 of 436 of RAMSES monitors and 170 alarm units

(1586 pieces of equipment)

What is Next?

CROME Evolution

Hamza Boukabache | CROME Evolution Project

CERN

ACCURATE 2M system architecture

Design flow of ACCURATE 2M

Design flow of ACCURATE 2M

ACCURATE 2 Verification - Results

- · Exhaustively proved functionality of most blocks end-to-end
 - Proved current measurement blocs
 - End-to-end proofs based on top-level inputs and outputs of full design were not feasible
- Found and removed 30 bugs:
 - 20 caused by ambiguous specification
 - 11 found by review of specification and natural language version of formal properties*

Block	Specification	Design	Verification	Verification	Total
			requirement	code	mismatch
Interval Counter	6	8	8	5	16
Pulse Counter	-	1	-	-	1
Pulse Generator	1	-	2	2	2
Synchronizer	1	-	-	1	1
Monostable	1	2	1	1	3
Channel2	1	1	2	2	2
Interface					
TxSRAM	1	1	3	3	3
Wrapper					
Top Module	-	2	-	-	2
Total	11	15	16	14	30

Ceesay-Seitz, K., Kundumattathil Mohanan, S. Boukabache, H., Perrin, D.: Formal Property Verification of the Digital Section of an Ultra-Low Current Digitizer ASIC.

Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2021)

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification.

In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

Improve the performances

CROME Evolution

Conclusion – Formal Methods

Huge benefits for critical systems:

- **Unambiguous specifications** → less faults
- Model checking covers a larger state space than tests \rightarrow find more faults
 - Proofs are valid for all input combinations over all time (within the chosen constraints)
- Fast detection of corner case faults \rightarrow hard to find with simulation or tests

It is a powerful tool that can be applied

- During many stages of a development project (specification, model generation, verification),
- For many different systems (PLCs, FPGAs/ASICs, Software, ...)

It is now an integral part of our development process

→ Currently being integration into our CI pipeline (License issues ...)

Challenges:

- State-space explosion: not every design can be fully verified within reasonable runtime
 - Can be expensive in terms of engineering time for complex designs
 - Difficulties to recruit in this field

Conclusion – Formal Methods

"Lessons learned and methodologies developed will pave the path for design and verification of next developments"

Backup slides

Backup slides

• NLP

Natural Language Properties

• Requirement:

"It shall be possible to manually trigger a reset of a radiation dose alarm through the supervision software."

• Natural language property :

```
"(Cycle is no MC
and (alarm was configured as latched at the previous MC)
and alarm reset equals 1 and (dose value is less than (threshold at previous MC)
or alarm function was deactivated at previous MC))
```

implies that:
(in one clock cycle, alarm is off)"

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification. In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

Natural Language Properties

"(Cycle is no MC and (alarm was configured as latched at the previous MC) and alarm reset equals 1 and (dose value is less than (threshold at previous MC) or alarm function was deactivated at previous MC))

```
implies that:(in one clock cycle, alarm is off)"
```

• <u>SystemVerilog property:</u>

```
property pIntAlarmResetBetweenMT1();
  (mtValidxDI == 0 && latchedLastMC == 1 &&
  integralAlarmResetxDI == 1 &&
    (signed'(integralxD0) < signed'(thresholdLastMc) ||
    alarmActiveLastMc == 0))
    |->
    ##1 (ALARMxD0 == 0);
    Set the set th
```

endproperty

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification. In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

Backup slides

• Counters

Verification Example – ACCURATE2 Mixed signal ASIC

Prototype for new read-out front end for CROME

- Several up to 40 bits wide counters
- Many corner cases

Measurement Mixed-Signal ASIC for Radiation Monitoring Using Ionisation Chambers", (IEEE sensors)

Digital

Analog

⁴³ Simple properties – action caused by an event

Prove that for all 2³² possibilities of the target value and any combination with other input signals, any time the counter equals the target value, the design generates a pulse.

```
assert property (
    counter == target_value
    l=>
    $rose(pulse)
);
```

Proven for ALL value combinations of ALL signals that are not explicitly mentioned.

