

HSE Occupational Health & Safety
and Environmental Protection unit

Development of Radiation Protection Monitors and Technologies for Safety-Critical Applications

Examples of application of Formal Methods Verification at CERN

Hamza BOUKABACHE on behalf of HSE-RP **04/07/2024**

Why do we need a radiation monitoring

When Accelerators are in operation

 \rightarrow The access to the beam tunnel and experimental areas is closed

Why do we need a radiation monitoring

When Accelerators are in operation :

 \rightarrow The access to the beam tunnel and experimental areas is closed

When Accelerators are stopped :

The target became radioactive (activation)

Radiation & Environmental Protection Before LS2

CROME Requirement - 2015

▪ **Development of a new generation of monitoring system**

This system provides:

- Continuous real-time monitoring of ambient dose equivalent rates over **9 decades**
- Alarm and interlock functionality with a probability of failure down to **10e-7**
- Long term permanent and reliable **data logging** by linking to a SCADA supervision
- **Edge computing** : Powerful processing capabilities for embedded calculation
- **Versatile** interface
- **Replacing ARCON system**
- **Preparing for future, RAMSES** : 14 years of operation

operation

,,,,,,,,

CROME Buck System

Radiation Monitor

RAMSES System (Outsourced 2004)

Example of the MS Rack

- **All the components have been individually analyzed** (> 3000 references)
- **Critical components have been replaced**
- **Redundancies**
- **Testability**

Critical decisions are taken into the FPGA section of the SoC (**38 billion of possible combinations**)

- \checkmark SIL2 compatible floating point calculation engine
- \checkmark Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- \checkmark Direct democracy with a global triplication :

Critical decisions are taken into the FPGA section of the SoC (**38 billion of possible combinations**)

- \checkmark SIL2 compatible floating point calculation engine
- \checkmark Developed a safe architecture (memories are protected, data is exchanged and checked with checksums)
- \checkmark Direct democracy with a global triplication :

Probability of dangerous failure per hour: $PFH = 9.28 \cdot 10^{-08}$ [fpmh]

Functional Verification Methodology

Verification Example

anyway checked at software level)

Exhaustively proven radiation dose **alarm generation**

Undocumented design decision Findings in integration/calculation algorithm :

> **→ Fault** in rounding mechanism only if internal result was negative → **Scenario not covered by simulation** (400000 stimuli applied)

Fault that would happen **after 7 years of continuous operation**

- \rightarrow Found after 1 second with formal
- \rightarrow Would require $>$ 7 years of simulation

Formal Property Verification – Model Checking

Our Co-Simulation Environment

North Area (EHN1)

CERN Radiation Monitoring Electronics (CROME)

CROME Junction Box : Configurable Interlock "router"

- Receives interlock outputs from CROME Monitors
- Receives interlock outputs from other RP systems on the zone
- Receives access system signals (doors status,…)
- Combines this signals through a programmable global logic (different for each zone)
- Generates global interlock signals, radiation alarm repeater signals, …

Configuration can be generated automatically using a GUI

Processing Module : • Running two MAX V in full redundancy • Routing inputs to outputs : PSS statues, gates or beam status to CROME CMPUs • Outputs of CROME CMPUs to Interlocking system • CROME CMPUs to CROME CMPUs • **Combinatory logic (Decision delegation) Power Supply Modules :** • DC IN / AC IN • 24V, 5V Out **Remote Status module :** • Running Zynq SoC (OS+HDL) • Collecting data CJB • Communication (only upstream) with WinCC OA based • Supervision **Input Outputs Modules :** • PSS SM18 • Burndy IN/OUT • CMPUs IN/OUT

Introduction CROME CROME CROME CROME Evolution – ACCURATE ASIC Conclusion

CERN Radiation Monitoring Electronics

CROME Rack System for high radiation areas :

High Radiation Area Radiation Safe Area

UPS

CERN

Introduction CROME CROME CROME CROME Evolution – ACCURATE ASIC Conclusion

CERN Radiation Monitoring Electronics

CROME Fixed Installations

Detector integration

CROME Manufacturing

Assembly and integration of CROME Bulk version **Stability tests Stability tests Stability tests**

HW integration automated tests

Temperature stress validation

Temperature compensation

Assembly and integration of CROME Rackable version
Rackable versions Rackable versions Rackable versions

Automated current calibration

HW integration automated tests Temperature tests of CROME Rackable versions

Long-term tests of CROME

Radiation & Environmental Protection After LS2 & LS3

Replacement during LS2 of

153 monitors and 70 alarm units

(532 pieces of equipment)

Replacement during LS23 of **436 of RAMSES monitors and 170 alarm units**

(1586 pieces of equipment)

What is Next?

27

CROME Evolution

CERN

ACCURATE 2M system architecture

Design flow of ACCURATE 2M

Design flow of ACCURATE 2M

ACCURATE 2 Verification - Results

- **Exhaustively proved functionality of most blocks** end-to-end
	- Proved current measurement blocs
	- End-to-end proofs based on top-level inputs and outputs of full design were not feasible
- **Found and removed 30 bugs**:
	- 20 caused by ambiguous specification
	- 11 found by review of specification and natural language version of formal properties*

Ceesay-Seitz, K., Kundumattathil Mohanan, S. Boukabache, H., Perrin, D.: Formal Property Verification of the Digital Section of an Ultra-Low Current Digitizer ASIC.

Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2021)

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification.

In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

CROME Evolution
 CROME Evolution

Conclusion – Formal Methods

Huge benefits for critical systems:

- **Unambiguous specifications** → less faults
- **Model checking covers a larger state space** than tests → find more faults
	- Proofs are valid for all input combinations over all time (within the chosen constraints)
- **Fast detection of corner case faults → hard to find with simulation or tests**

It is a **powerful tool** that can be applied

- During many stages of a development project (specification, model generation, verification),
- For many different systems (PLCs, FPGAs/ASICs, Software, …)

It is now an integral part of our development process

 \rightarrow Currently being integration into our CI pipeline (License issues ...)

Challenges:

- State-space explosion: **not every design can be fully verified** within reasonable runtime
	- Can be expensive in terms of engineering time for complex designs
	- Difficulties to recruit in this field

Conclusion – Formal Methods

" Lessons learned and methodologies developed will pave the path for design and verification of next developments"

Backup slides

Backup slides

• NLP

Natural Language Properties

Requirement:

"It shall be possible to manually trigger a reset of a radiation dose alarm through the supervision software."

• Natural language property :

```
"(Cycle is no MC 
and (alarm was configured as latched at the previous MC)
and alarm reset equals 1 and (dose value is less than (threshold at previous MC) 
or alarm function was deactivated at previous MC))
```
implies that: (in one clock cycle, alarm is off)"

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification. In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

Natural Language Properties

"(**Cycle is no MC** and **(alarm was configured as latched at the previous MC)** and **alarm reset equals 1** and (dose value is less than (threshold at previous MC) or alarm function was deactivated at previous MC))

```
implies that:(in one clock cycle, alarm is off)"
```

```
SystemVerilog property:
  property pIntAlarmResetBetweenMT1();
       (mtValidxDI == 0 && latchedLastMC == 1 && 
  integralAlarmResetxDI == 1 &&
       (signed'(integralxDO) < signed'(thresholdLastMc) ||
      alarmActiveLastMc == 0))
       |->
      ##1 (ALARMxDO == 0);
```
endproperty

Ceesay-Seitz, K., Boukabache, H., Perrin, D.: Semi-formal reformulation of requirements for formal property verification. In: Proceedings of Design and Verification Conference and Exhibition Europe, DVCon Europe, Munich (2019)

Backup slides

• Counters

Verification Example – ACCURATE2 Mixed signal ASIC

Prototype for new read-out front end for CROME

- Several up to 40 bits wide counters
- Many corner cases

S. K. Mohanan, H. Boukabache, V.Cruchet, D. Perrin, S.Roesler, and U. Pfeiffer, "*An Ultra Low Current Measurement Mixed-Signal ASIC for Radiation Monitoring Using Ionisation Chambers*", (IEEE sensors)

43 **Simple properties – action caused by an event**

> Prove that for all 2³² possibilities of the target value and **any combination** with other input signals, any time the counter equals the target value, the design generates a pulse.

```
assert property (
     counter == target_value
   |=> 
  $rose(pulse)
);
```
Proven for ALL value combinations of ALL signals that are not explicitly mentioned.

