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BE-ICS in a nutshell

*  “BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using
standard industrial control solutions” https://be-dep-ics.web.cern.ch
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1. Functional Safety activities

* We apply the Functional Safety standards in our projects to protect the
personnel, the installations and the environment

 |EC61508
* |EC 61511 (specific for the process industry)
* |EC62061

* We follow the Safety Life Cycle
1. Risk analysis and assessment
2. Design and engineering of the safety system
3. Commissioning, operation and maintenance
4. Planning, management and verification

* We use SIL (Safety Integrity Level)
* |t gives us the necessary risk reduction
* And the requirements to design and develop our safety system
(hardware, software, architecture, testing, etc.)
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Safety Instrumented Systems design
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Safety Instrumented Systems design

Reliability Block Diagram (RBD) or Fault Tree Analysis (FTA) for SIFs — ISOGRAPH reliability workbench
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Safety design: Hazard and risk assessment via LOPA

Layers of Protection Analysis (LOPA)
recommended by the IEC 61511-3

* Risk assessment methods
Impact Event Initiating Cause 1 Initiating Cause 2 Initiating Cause 3 Initiating Cause 4 Initiating Cause 5 Initiating Cause 6 Initiating Cause 7
Error measurement one CMCT componentrror measurement one Q45-D2 componen Error measurement one Triplet-D1 component
Error in actuation Errorin actuation
Upper FEC path path
Jack / UAP and
PXI - SAMbuCa motors Rotational Horizontal-Vertical Vertical-Rotational Horizontal Vertical Horizontal Rotational Operator mistake
IP side
Break Bellow
Event Frequency (1/h), 3.08E-05 3.10E-05 1.84E-05 1.14E-07 1.14E-07 1.14E-07 1.14E-07 1.14E-07 1.14E-07 1.14E-07 6.38E-09
Event Frequency (1/y) 0.27 0.27 0.161534 0.00099864 0.00099864 0.0009986 0.0009986 0.0009986 0.0009986 0.0009986 0.0000559
. PL1 10 10 10 10 10
Protection and
s PL2 10 10
mitigation layers
PL3 10 10 10 10 10 10 10
Operation Time 10 10 10 10 10 10 10 10 10 10 10
Procedures / Alarms
Cybersecurity: TN +
RBAC 0
Physical Limit Switches
0 0 10 0 10 10 10 0
Cumulative 10000 1000 1000 10 1000 10 1000 100 1000 100 10000
Intermediate event
frequency 0.000027 0.000271 0.00016153 0.0000999 0.0000010 0.00009986 0.00000100 0.00000999 0.00000100 0.00000999 0.00000001
Weight over the
overall frequency 3.96% 39.76% 23.66% 14.63% 0.15% 14.63% 0.15% 1.46% 0.15% 1.46% 0.00%
Total mitigated event
frequency 0.00068
Tolerable Fvent
Frequency - LHC 0.01000
Tolerable Event
Frequency - IP side 0.00250
Tolerable Event
Frequency - Bellow 0.000119048

Residual Risk




2. Formal method and verification for software
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*  We apply formal methods and formal verification (e.g. model checking) to guarantee that PLC programs are compliant
with their specifications (PLCverif tool)

PLC program

Model checking

I

PLCverif references:
https://gitlab.com/plcverif-oss and
www.cern.ch/plcverif
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NONDETERMINISTIC of bool
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FCl/outl = ((FCl/inl | (! FC1/in2)) && (! EC1/i
n3) || FCL/in4))
FCl/out2 := ((FC1/inl || (! FC1/in2)) && (! ECL/i
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3. Neural network controllers: Verification case study

* Induced draft cooling towers (IDCTs) "

Incoming
hot water

* Provide cold water for different LHC subsystems (e.g. cryogenics, chillers, air

handling units, etc.) Ventilation and
showering valve
* Control actions:

* Mode selection: |
1. Ventilation |1]I|]]]]]]I|]]]]I|]I[[ Bypass valve Iﬂ]ﬂ]ﬂ]ﬂ]ﬂlﬂ]ﬂﬂ
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* Control objective: T T
L T ch T
* Keep outlet water temperature within strict limits T _ out
* Utilize minimum amount of energy

regression _‘ & Ghawash, F., Hovd, M., Schofield, B.: Model predictive control of induced draft

= cooling towers in a large scale cooling plant. IFAC-PapersOnLine 55(7), 161-167
(2022) https://www.sciencedirect.com/science/article/pii/S2405896322008394

fanspeed

twetbulb
Neural Network controller - 1) The idea was replacing the MPC by a NN

mode
classification

But the NN is NOT DEPLOYED YET!!
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3. Neural network controllers: Verification case study

Different methods were applied and compared: nnenum
1. nnenum:.an open-source !\IN verification tool for ReLU NNs from Stony > Keras
Brook University https://github.com/stanleybak/nnenum
2. Z3:an open-source theorem prover from Microsoft Research /
https://github.com/Z3Prover/z3

3. PLCverif: an open-source formal verification tool for PLC programs from = i
CERN https://gitlab.com/plcverif-oss > | PLC source code

4. Testing: traditional testing techniques
\ | .

_& o Ignacio D. Lopez-Miguel et al. “Verification of Neural Networks Meets PLC Code: An LHC Cooling Tower Control System at
= CERN”. In EANN 2023: Engineering Applications of Neural Networks conference
https://link.springer.com/chapter/10.1007/978-3-031-34204-2 35
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Formal methods research activity — recent publications

Latest research activities (BE-ICS) related to formal specifications and formal verification of Neural Networks

. _Extending the integration of FRET in PLCverif. “Verifying PLC Programs via Monitors: Extending the Integration of
/ FRET and PLCverif”. X. Fink et al. Paper accepted at the NASA Formal Methods 2024 conference
https://conf.researchr.org/home/nfm-2024

_Integration of a new specification method/tool called FRET in PLCverif. “From Natural Language Requirements to
;—/‘ the Verification of Programmable Logic Controllers: Integrating FRET into PLCverif”. Z. Adam et al. Paper accepted
at the NASA Formal Methods 2023 conference https://conf.researchr.org/home/nfm-2023

. _ Formal verification of a Neural Network running on a PLC. “Verification of neural networks meets PLC code: An
/ LHC cooling tower control system at CERN”. |.D. Lopez et al. Paper accepted at the Engineering Applications and
Advances of Artificial Intelligence 2023 conference https://eannconf.org/2023/
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