

Functional Safety, Formal methods and Neural Networks at BE-ICS

Xaver Eugen Fink

Borja Fernández Adiego

On behalf of BE-ICS

03/07/2023

BE-ICS in a nutshell

 "BE-ICS provides the technology, frameworks, engineering and CERN-wide support for systems and projects in all domains using standard industrial control solutions" <u>https://be-dep-ics.web.cern.ch</u>

Images from <u>cds.cern.ch</u>

1. Functional Safety activities

- We apply the Functional Safety standards in our projects to protect the personnel, the installations and the environment
 - IEC 61508
 - IEC 61511 (specific for the process industry)
 - IEC 62061
- We follow the Safety Life Cycle
 - 1. Risk analysis and assessment
 - 2. Design and engineering of the safety system
 - 3. Commissioning, operation and maintenance
 - 4. Planning, management and verification
- We use SIL (Safety Integrity Level)
 - It gives us the necessary risk reduction
 - And the **requirements to design and develop our safety system** (hardware, software, architecture, testing, etc.)

Safety Instrumented Systems design

Demand Mode of Operation								
Safety Integrity Level (SIL)	PFD _{avg}	Required risk reduction						
4	$\ge 10^{-5}$ to < 10^{-2}	$ > 10^4 \text{ to} \le 10^5 $						
3	$\geq 10^{-4}$ to < 10^{-3}	$^3 > 10^3 \text{ to} \le 10^4$						
2	$\geq 10^{-3}$ to < 10^{-2}	2 > 10 ² to $\le 10^3$						
1	$\geq 10^{-2}$ to < 10^{-1}	$1 > 10^1 \text{ to} \le 10^2$						

Safety Instrumented Systems design

Reliability Block Diagram (RBD) or Fault Tree Analysis (FTA) for SIFs – ISOGRAPH reliability workbench

Safety design: Hazard and risk assessment via LOPA

Layers of Protection Analysis (LOPA)

• Risk assessment methods

recommended by the IEC 61511-3

Impact Event		Initiating Cause 1	Initiating Cause 2	Initiating Cause 3	Initiating Cause 4		Initiating Cause 5		Initiating Cause 6			Initiating Cause 7
				Error in actuation path Jack / UAP and motors	Error measurement one CMCT componentrror measurement one Q45-D2 componen Error measurement one Triplet-D1 component							
IP side Break Bellow		Upper FEC	Error in actuation path PXI - SAMbuCa		Rotational	Horizontal-Vertical	Vertical-Rotational	Horizontal	Vertical	Horizontal	Rotational	Operator mistake
	Event Frequency (1/h)	3.08E-05	3.10E-05	1.84E-05	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	1.14E-07	6.38E-09
	Event Frequency (1/y)	0.27	0.27	0.161534	0.00099864	0.00099864	0.0009986	0.0009986	0.0009986	0.0009986	0.0009986	0.0000559
Protection and mitigation layers	PL1 PL2 PL3	10 10 10	10	10)	10		10		10	10	10 10 10
Operation Time	1 25	10	10	10) 10	10	10	10	10	10	10	10
Procedures / Alarms												
Cybersecurity: TN + RBAC												0
Physical Limit Switches	5			C) 0	10	0	10	10	10		0
Cumulative		10000	1000	1000) 10	1000	10	1000	100	1000	100	10000
	Intermediate event frequency	0.000027	0.000271	0.00016153	0.0000999	0.0000010	0.00009986	0.00000100	0.00000999	0.00000100	0.00000999	0.00000001
	Weight over the overall frequency Total mitigated event	3.96%	39.76%	23.66%	14.63%	0.15%	14.63%	0.15%	1.46%	0.15%	1.46%	0.00%
	frequency		0.00068									
	Frequency - LHC		0.01000									
	Frequency - IP side	0.00250										
	Tolerable Event Frequency - Bellow		0.000119048									
	Residual Risk	0.00181738										

2. Formal method and verification for software

PLC verification framework PLCverif

 We apply formal methods and formal verification (e.g. model checking) to guarantee that PLC programs are compliant with their specifications (PLCverif tool)

3. Neural network controllers: Verification case study

LHC cooling towers control

- Induced draft cooling towers (IDCTs)
- **Provide cold water** for different LHC subsystems (e.g. cryogenics, chillers, air handling units, etc.)
- Control actions:
 - Mode selection:
 - 1. Ventilation
 - 2. Showering
 - 3. Bypass
 - Fan speed
- Control objective:
 - Keep outlet water temperature within strict limits
 - Utilize minimum amount of energy

Ghawash, F., Hovd, M., Schofield, B.: *Model predictive control of induced draft cooling towers in a large scale cooling plant*. IFAC-PapersOnLine 55(7), 161–167 (2022) <u>https://www.sciencedirect.com/science/article/pii/S2405896322008394</u>

The idea was **replacing** the **MPC** by a **NN**

But the NN is NOT DEPLOYED YET!!

3. Neural network controllers: Verification case study

How to verify these properties?

Ignacio D. Lopez-Miguel et al. "Verification of Neural Networks Meets PLC Code: An LHC Cooling Tower Control Sy CERN". In EANN 2023: Engineering Applications of Neural Networks conference https://link.springer.com/chapter/10.1007/978-3-031-34204-2 35

Formal methods research activity – recent publications

Latest research activities (BE-ICS) related to **formal specifications** and **formal verification of Neural Networks**

Extending the integration of **FRET** in **PLCverif**. *"Verifying PLC Programs via Monitors: Extending the Integration of* FRET and PLCverif". X. Fink et al. Paper accepted at the **NASA Formal Methods 2024** conference https://conf.researchr.org/home/nfm-2024

Integration of a **new specification method/tool** called **FRET** in **PLCverif**. *"From Natural Language Requirements to the Verification of Programmable Logic Controllers: Integrating FRET into PLCverif". Z. Adam et al.* Paper accepted at the **NASA Formal Methods 2023** conference <u>https://conf.researchr.org/home/nfm-2023</u>

Formal verification of a Neural Network running on a PLC. "Verification of neural networks meets PLC code: An LHC cooling tower control system at CERN". I.D. Lopez et al. Paper accepted at the Engineering Applications and Advances of Artificial Intelligence 2023 conference https://eannconf.org/2023/