CNPEM's First Superconducting Device Development: A Wavelength Shifter for Sirius Hard X-ray Beamline

TE-MSC Seminar 27th June 2024

Rafael Molena Seraphim

(Head of the Systems Engineering Division) On behalf of the Technology Unit

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

We are located at Campinas (a city of ~1.1 million people), about 100 km from Sao Paulo

530,000 m²

~860 employees

~450-560 trainees, pos-docs, students and outsourced personnel

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Sirius Highlights

(Some numbers only considering the storage ring)

More than 1000 magnets (developed in a partnership w/ WEG)

520 m of fully NEG-coated vacuum chambers (developed in-house)

180 RF BPMs and electronics; beam scrappers etc. (developed in-house or w/ partnerships) 4 towers of RF solid-state amplifier, 65 kW each (developed in-house)

More than 35 power Supplies powering families of magnets (developed in-house)

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

Superconductivity Initiatives

Motivation:

Superconductivity Initiatives – CNPEM/CERN/Universities (USP and UFSCar) partenership

Superconductivity Initiatives – CNPEM/CERN/Universities (USP and UFSCar) partenership

 Sirius phase 2 - new hard X-ray beamlines -> Need for high energy photons

Two bea	amline d	candidates
---------	----------	------------

Beamline	Exp. Technique	Energy Range [keV]
SUSSUARANA	X-ray Diffraction	30 - 200
MANATI	X-ray Tomography	80 - 150

(current beamlines focus on photon energies below 70 keV)

 Current non-superconducting magnets of 3.2 T do not produce reasonable photon flux above 100 keV

SWLS – Design Premises

- Build a superconducting magnet, cryogen-free, with magnetic field higher than 6 T and compatible with one of the Sirius low-beta straight sections
- The magnet must not impact the Sirius emittance and beam dynamics
- Use NbTi wires
- Reuse components from a deactivated 4 T Superconducting Wiggler

SWLS NbTi wire Ø = 0.90 mmCu/NbTi = 0.97

Nova estrutura eletromagnética

ΊΝΡΕΜ

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

Electromagnetic Design

A very narrow central peak field not to **impact the beam emittance**

Basic Parameters

Parameters	Targets
Current	< 300 A
Peak field	> 6 T
FWHM of central peak	< 30 mm
1st magnetic field integral	< 200 G.cm
Margin @ 5.0 K	> 20%

Electromagnetic Design

Electromagnetic Design Analysis and Optimization:

- Geometry of the model
- Magnetic field plots
- Field integrals and multipoles
- Fabrication errors
- Load line operating margin
- Energy Losses
- SME and Inductance
- Photon flux emission

Main r	esults		
Parameters	Targets	Results	_
Current	< 300 A	228 A	Ē
Peak field	> 6 T	6.6 T	Eiold
FWHM of central peak	< 30 mm	29.6 mm	otic
1st magnetic field integral	< 200 G.cm	72 G.cm	N
Margin @ 5.0 K	> 20%	24%	_

Additional results

Parameters	Results
Roll-off of peaks (± 5 mm)	0.16%
2nd magnetic field integral	6.7 kG.cm ²
Total integrated quadrupole	0.13 T
Total integrated sextupole	5.7 T/m
Current sharing temperature	6.1 K
Total AC loss during ramp-up (time = 5 min)	0.314 W
Stored magnetic energy	3.37 kJ
Inductance	130 mH

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Field maps

ramp-up

Central

Coil

Electromagnetic Design – Current ramp-up

BRAZILIAN GOVERNMEN

UNITING AND REBUILDIN

MINISTRY OF SCIENCE TECHNOLOGY

AND INNOVATION

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

2.0 -

52.0 94.7 57.60

Geometry and dimensions

19.8

The coils have slightly oval shape to better maintain the tension on the wires during winding process

Central coil (1080 turns)

-12.0

Coil prototyping – winding process

- Winding structure: Mandrel + pole + support (Upper lid)
- Edges insulation: 300 µm fiberglass
- Winding process: layer by layer
- Interlayer insulation: 150 μm fiberglass

Coils fabrication – impregnation setup and procedure

Pre-impregnation process:

- Room temperature pump down (24h) and bake-out (24h@80°C): pressure 10⁻² mbar 1.
- Resin overnight at room temperature with vacum pump

Impregnation process:

- Degass the resin: 1h@50°C
- Open valve and apply 100 mbar nitrogen pressure to control the velocity of the flow
- Milking and reversed milking with 1 atm pressure (about 5 7 times) 3.

140 130 2nd curing step - 10 h @ 130 °C 120 Degassing 1 h @ 50 °C (c) 110 Temperature 100 1st curing step 90 6 h @ 80 °C 80 70 Natural 60 cooldown 50 Ramp up Tamb Time (h) BRAZILIAN GOVERNMEN MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Used resin:

- Araldite F (100 pbw)
- Hardener HY 905 (100 pbw)
- Flexibilizer DY 040 (10 pbw)
- Accelerator DY 062 (1 pbw)

(pbw = parts by weight)

UNITING AND REBUILDING

Coils fabrication - prototypes

- Impregnation process was optimized using copper prototypes
- After few copper prototypes, NbTi coils were successfully prototyped
- Prototyped coils were successfully tested at the vertical cryostat

льеш

20

Vertical Cryostat

Cryostat Design and Features:

The cryostat follows the same principles as the SWLS: conduction cooling, current leads, thermal shield, etc.

Applications and tests planned

- Thermal and magnetic tests of superconducting coils
- Thermal performance of components at cryogenic temperatures
- Mechanical component fixation at cryogenic temperatures
- Splice box performance evaluation
- Quench protection system testing
- Control system testing and evaluation

IRAZILIAN GOVERNMENT

AND INNOVATION

2.955 18 B2 [T]: B3 [T]:

Coils fabrication – tests in the vertical cryostat

- Mirror yokes were designed to test the coils
- PCB boards with 3 Hall sensors (HGT-2101) were used to measure the magnetic field

Coils fabrication – tests in the vertical cryostat

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

24

Mechanical design

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

MINIST

NPEM

 $VM Stress_{max} = 230MPa (< 260 MPa)$

Mechanical design – electromagnetic structure

Main Concepts

- Large thermal contraction of Al clamps to pre-load the coils
- **Central coils' clamps with conical shape** to prevent magnet's gap closing
- Invar washers to prevent bolt loosening

Central coils' conical clamps

Forces for Coils and Clamps

Mechanical design – vacuum chamber

UNITING AND REBUILDIN

Main Concepts

- Tripartite CuCrZr chamber
- Total length of **1.2m**
- Very thin central part (5mm vertical aperture;
 0.5mm wall)
- **Optimized internal profile** to withstand the pressure difference at the central part

Longitudinal external profile in the assembly

Mechanical design – structure supports

Main Concepts

- Base frame supports the whole structure
- Kevlar straps suspension:
 - o Minimize thermal conduction with low thermal contraction
 - Provide vertical (adjustable out of vacuum) and horizontal alignment
- Lateral Yoke serves as an anchoring point for the supports (unique connection between base frame, vacuum chamber and yoke)

[316L SS]

Lateral Yoke

Chamber Supports -[316L SS] Kevlar Straps

Base frame

[304 SS]

Mechanical design – chamber supports

Main concepts

- **Flexures** ensure high transversal stiffness and low longitudinal stiffness (to accommodate thermal contraction)
- Flexures' anchoring points forms perpendicular lines pointing to the magnet's center avoiding its displacement
- Materials:
 - **316L SS** provides good mechanical strength with relatively low thermal conductivity and low heat capacity (improving cooldown)
 - **G10** minimizes heat transfer between 4K and 20K circuits due to its low thermal conductivity
- Hydroformed bellows with modified comb-type RF shield:
 - Isolate the vacuum (cryostat/beam)
 - Provide longitudinal elasticity for thermal contraction
 - Minimize heat transfer between chamber (20K) and cryostat (300K) with low machine impedance impact

Mechanical design – validations and next steps

Validations already carried out

Kevlar straps mechanically characterized

Supports validation (static and dynamic studies)

Disassembly and inspection of the 4T SCW

Assembly and fiducialization

More details in the following slides

Alignment procedure Suspension stiffness

- Stiffness
- Vibration

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

31

UNITING AND REBUILDING

Thermal links

Heat Loads and Cooling Circuits

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Thermal Simulaitons – main considerations

The heat loads were considered in the model with their calculated values and locations along each thermal circuit

BRAZILIAN GOVERNMEN

UNITING AND REBUILDIN

35

Temperature distribution – 60K Circuit

Temperature distribution – 20K Circuit

Without 3rd Harmonic cavity – short e- beam bunch

(Power dissipated in the chamber: ~15 W)

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Temperature distribution – 20K Circuit

With 3rd Harmonic cavity – long e- beam bunch

(Power dissipated in the chamber: ~1.75 W)

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Temperature distribution – 4K Circuit

AND INNOVATION

UNITING AND REBUILDING

Cooldown and warm-up time

AND INNOVATION

UNITING AND REBUILDING

40

Coils temperature after current ramp-up

Temperature distribution after 10 minutes current ramp-up

Ramp-up time	5 minutes	10 minutes	15 minutes
Central coils max. temperature	5.54 K	4.84 K	4.54 K
Ramp rate	0.76 A/s	0.38 A/s	0.25 A/s

ϽΝΡΕΜ

Tests and validations already carried out

 Validation of fastening and tightening methods at cryogenic temperatures

 Vacuum sealing concept of the CuCrZr flanges at cryogenic temperatures

 Characterization of thermal elements and their contacts at low temperatures

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

BRAZILIAN GOVERNMEN

Current leads and cryogenic electrical circuits

- Current Leads: 300K 4K
 - Main heat load in the cryogenic system
- Links: between SC wires and coils
 - Coils wound with long extensions
 - Minimize connections
- Splices: electrical connection between coils
 - Connections located at good cooling capacity regions
 - Unique resistive part between coils
 - > Pre-requisite: $R < 500 n\Omega @ 4 K$

Splice box installed at the vertical cryostat

44

SC wires

Preliminary results: $R < 10 n\Omega @ 4 K$

Next steps:

• Test the new mechanical fixture of the current leads

Power supply

0

R₀

-0

UNITING AND REBUILDIN

 V_0

Quench protection

• Premises:

- Provide redundant detection and protection
- Design to keep max hot-spot temp < 100 K
- Redundant voltage taps Detection by overvoltage and coil unbalance Redundant extraction switches
- ...
- **Detection**: voltage measurement voltage taps
 - Detection circuit: Analog vs Digital using FPGA: \geq
 - FPGA can be scalable and optimizable for the SWLS
- **Protection:** Active method with external energy extraction
 - The detection circuit sends a signal to the extraction circuit 1.
 - The power supply is turned off, and the contactors are activated 2.
 - 3. Dump resistors in the extraction circuit dissipate the stored energy

Quench protection archtecture

Quench Detection prototype (analog circuit) and Extraction circuit

Next steps:

- Validate the FPGA prototype in the vertical cryostat
- Robustness and reliability of the FPGA concept for the SWLS

46

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

Magnetic characterization plans

AND INNOVATION

UNITING AND REBUILDING

- Challenges: Small gap; cold vacuum chamber; high field calibration
- Two proposed solutions: Characterization in air ("Plan A");
 Characterization in vacuum ("Plan B")
- Measurements: Mapping of the magnetic field profile; measurement of field integrals

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

49

Assembly

Challenges

- $\circ~$ Centering the magnetic field:
 - Before cooldown: ensuring precise alignment with geometric references
 - After cooldown: maintaining precise positioning with limited access for correction
- **Cabling and thermal links integration:** Planned assembling sequence to simplify the connections

Assembly

Main Concepts

- Measurement-assisted alignment concept (before cooldown):
 - Geometric center alignment: assembling and measuring components in respect to fiducial points – reference points transferred from the electromagnetic structure to the external cryostat
 - Magnetic center alignment: the measurement of permanent magnets center, located in fiducial points outside the cryostat, allows to correlate the magnetic center with the geometric reference – using the same magnetic measurement system
- Accommodation of thermal contraction (after cooldown):
 - Position the structure considering simulated thermal contractions (validation needed)
 - Vertical alignment can be adjusted using screws outside the cryostat (validation needed)

Alignment tolerances are still being defined together with the Accelerator Physics Group

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Outline

- Brief Overview of CNPEM
- CNPEM engages in superconductivity initiatives
- SWLS Overview
 - Electromagnetic design
 - Coils fabrication
 - Mechanical design
 - Cryogenic design
 - Electrical systems
 - Magnetic characterization approach
 - Assembly and Sirius Installation
 - Schedule and summarized development status

Schedule

2024												20	25										
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
						DES	IGN		DESIGN REVIEW														
					DISASSE	MBLY OF																	R
					SC. W	IGGLER								1									AN
									N	ANUFA	CTURIN	G											DS
									1		1												ΥT
												ASSE	MBLY ANI	D INITIAL	TESTS								T Î
																				1			ΟL
																MAG	. CHARA	CTERIZ	ATION				E
																		0					B D E
																			VIISSION				
																			PREPAR	ATION FO	R INSTALL	TION AT	

Summarized development status

		PROGRESS
<image/>	Electromagnetic Design	 Simulations and analysis of the magnetic field profile SC coils fabrication Testing of the coils in the vertical cryostat Final validation of the electromagnetic design of the SWLS Development of hor/ver correctors
	Mechanical and Cryogenic Design	 Simulations and analysis of temperature distribution Simulations and analysis of force distribution in mechanical elements Simulation of refrigeration concepts using the vertical cryostat Validation of electron chamber components Evaluation and inspection of the superconducting wiggler structure
	Electrical Systems	 Development, testing, and validation of cryogenic electrical circuit Manufacturing, improvement, and testing of resonant power converter Development of quench detection and protection system Development of hardware and software for control and monitoring
	Validations and Characterizations	 Development of setup for magnetic characterization Integration, assembly, and fiducialization strategy Evaluation of the impact of device vibration on the machine Final magnetic characterization of the SWLS

BRAZILIAN GOVERNMENT

UNITING AND REBUILDING

55

Thank you!

Acknowledgements:

- CERN
- David Tommasini
- Gerard Willering
- Salvatore Mele
- Attilio Milanese
- Emmanuele Ravaioli
- Louis de Mallac
- Miguel Cerqueira Bastos
- Torsten Koettig
- Carlo Petrone
- Amalia Ballarino
- CNPEM development team

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

