

## High Field Magnets Programme

### WP 3.4 Nb<sub>3</sub>Sn Magnet Technology Development Program (TDP)

Author: Ariel Haziot

Date: 19.09.2024



Date: 19.09.2024

### Table of content

TDP main axis



#### Quadrupole short model program (MQXFS)



#### Thermomechanical properties of coil composite material RT vs 77K OVERVIEW



## 

#### Nb<sub>3</sub>Sn/Nb<sub>3</sub>Sn electrical connection - Splice





Date: 19.09.2024

Racetrack magnets development program (SMC)



Date: 19.09.2024

Description of the scope

The Short Model Coil (SMC) assembly has been designed as a test bench for short racetrack coils wound with Nb<sub>3</sub>Sn cable.

- A double pancake racetrack coil.
- An assembly relying on a bladder and key structure and hosting 1 coil.

The SMC program led by J.C. Perez since 2009 now enters the TDP.

The SMC 11T 2<sup>nd</sup> Generation features:

- A conductor with 40x0.7 mm Nb<sub>3</sub>Sn strands
- A layer jump in the straight section



Main persons involved:

J. Ferradas Troitino, J. Feuvrier, M. Guinchard, T. Mulders, J.C. Perez, E. Ravaioli, G. Willering, 927 and SM18 teams



Date: 19.09.2024

Goals of the program

#### The main objective of the program is to explore the influence of different variables:

- the impregnation system
- the adhesion condition
- the conductor
- the electrical insulation

The SMC program is also used as a test bench for new magnet protection systems. (in collaboration with WP4.5)



#### **ESC** (Energy Shift with Coupling)







**E-CLIQ** 

Courtesy of T. Mulder



Date: 19.09.2024

**TE-HFM Workshop** 

0.30

0.25

E 0.20

0.10 <sup>2</sup>

0.05

Overview of the results from SMC 11T 2<sup>nd</sup> Generation

- 6 SMC 11T 2G have been tested in 2 years.
- All coils exhibit a current limitation, and a weak point located in the layer jump.
- Tomography studies seems to confirm a degradation of the cable in the area.
- It is difficult then to pronounce any strong conclusion on the influence of the resin.
- The layer jump area has been modified since.

| Name       | Impregnation             | Comment         | Status          |
|------------|--------------------------|-----------------|-----------------|
| SMC2G-101  | CTD-101K                 |                 | Tested: 11.2022 |
| SMC2G-102  | MY750                    |                 | Tested: 02.2023 |
| SMC2G-103b | Mix61 (NHMFL)            | Tomography      | Tested: 07.2023 |
| SMC2G-104  | MY740 (MSU)              |                 | Tested: 10.2023 |
| SMC2G-105  | CTD-101K                 | Removable pole  | Tested: 01.2024 |
| SMC2G-106  | (to be selected)         | Removable pole  | Not built yet   |
| SMC2G-107  | CTD-101K + DY040 (Polab) | CIEMAT training | Tested: 06.2024 |





Date: 19.09.2024

Coming next on SMC 11T 2<sup>nd</sup> Generation

- Test of #107b (Q4 2024)
  - ESC coils
- Test of #108 and #109 (Q1 2025)
  - Modified layer jump
  - E-CLIQ
- Assembly of #110 (Q1 2025)
  - New layer jump geometry
  - Possibly impregnated with filled wax (collaboration with WP4.3)
- Assembly of #106 (Q2 2025)
  - New layer jump geometry
  - Best impregnation system
  - Removable pole
- Test of #110 and #106 (Q2 2025)

| Name       | Impregnation                | Comment                  | Status               |
|------------|-----------------------------|--------------------------|----------------------|
| SMC2G-101  | CTD-101K                    |                          | Tested: 11.2022      |
| SMC2G-102  | MY750                       |                          | Tested: 02.2023      |
| SMC2G-103b | Mix61 (NHMFL)               | Tomography               | Tested: 07.2023      |
| SMC2G-104  | MY740 (MSU)                 |                          | Tested: 10.2023      |
| SMC2G-105  | CTD-101K                    | Removable pole           | Tested: 01.2024      |
| SMC2G-106  | (to be selected)            | Removable pole           | Not built yet        |
| SMC2G-107  | CTD-101K + DY040 (Polab)    | CIEMAT training          | Tested: 06.2024      |
| SMC2G-107b | CTD-101K + DY040 (Polab)    | ESC coils                | Assembled: 10.2024   |
| SMC2G-108  | CTD-101K + DY040 (Polab)    | E-CLIQ & Mod. layer Jump | Impregnated: 07.2024 |
| SMC2G-109  | CTD-101K + DY040 (Polab)    | E-CLIQ & Mod. layer Jump | Impregnated: 08.2024 |
| SMC2G-110  | Possibly filled wax (WP4.3) | E-CLIQ & New layer Jump  | Not build yet        |

No more 11T cable length are available for building more SMC 2<sup>nd</sup> generation after that.



Coming soon: SMC\_MQXF (3<sup>rd</sup> Generation)



- A new SMC coil using available MQXF strand has been proposed by J.C. Perez:
  - It is compatible with the tooling we have today (used for SMC 11T 2G)
  - It can be assembled in the 2 SMC structures we have

| Cable                       |      | 2 <sup>nd</sup> Gen. | 3 <sup>rd</sup> Gen. |
|-----------------------------|------|----------------------|----------------------|
| No. strand                  |      | 40                   | 32                   |
| Strand diam.                | [mm] | 0.700                | 0.850                |
| Cu/NonCu                    |      | 1.2                  | 1.0                  |
| Bare cable thickness (R)    | [mm] | 1.31                 | 1.59                 |
| Bare cable width (R)        | [mm] | 14.89                | 14.88                |
|                             |      |                      |                      |
| Coil                        |      | 2 <sup>nd</sup> Gen. | 3 <sup>rd</sup> Gen. |
| No. of turns per pole       |      | 35                   | 31                   |
| Number of layer             |      | 2                    | 2                    |
| Magnet                      |      | 2 <sup>nd</sup> Gen. | 3 <sup>rd</sup> Gen. |
| Short sample current (4.3K) | [kA] | 14.24                | 17.84                |
| Short sample current (1.9K) | [kA] | 15.58                | 19.80                |
| Short sample Field (4.3K)   | [T]  | 12.46                | 13.30                |
| Short sample Field (1.9K)   | [T]  | 13.64                | 14.53                |



- Design completed in September 2024
- New parts procured for Q4 2024
- 1<sup>st</sup> coil for Q1/Q2 2025

#### The test program for this new SMC generation is under discussion.





Date: 19.09.2024

Description of the scope

The quadrupole short model (MQXFS) is a 1.2-m long magnet with the same design as MQXFA/MQXFB, and very similar manufacturing and assembly procedure.

- Initially, used for design and parameter validation
- Then, used as a tool to validate new measures implemented in full length magnets
- Now, used for technological studies



Main persons involved:

S. Izquierdo Bermudez, R. Diaz Vez, P. Ferracin, J. Ferradas Troitino, S. Ferradas Troitino, J. Feuvrier, L. Fiscarelli, M. Guinchard, F.J. Mangiarotti, J.C. Perez, P. Quassolo, E. Ravaioli, P. Rogacki, E. Todesco, G. Willering, M. Wozniak, 927 and SM18 teams



Date: 19.09.2024

Overview of MQXFS

Since the first tests of MQXFS1 at Fermilab in 2016:

- 7 magnets fabricated and tested
- 27 coils tested

High Field Magnets Programme

- 4 different conductors
- 11 pre-load configurations

- 2 test stations commissioned at CERN
- 2 beam screens tested
- 4 protection systems tested





MQXFS7: 2 RRP coils and 2 PIT coils tested at stresses up to 190 MPa



Training and VIs of MQXFS7

- No degradation observed in the RRP coils up to 190 MPa up to 85% of I<sub>ss</sub>.
- The quench limitation was on the PIT coil with bundle barrier, and located in the pole turn (HF region).
- The induced degradation at 190 MPa is permanent.

HFM

High Field Magnets

Current (kA)

At high pre-stress levels (170-190 MPa), the performance of the magnet reduces after thermal cycles.

See presentation given at ASC-24 and article to be published by F.J. Mangiarotti et al.

Coming next on MQXFS

- Re-assembly of MQXFS4 to test the stress limit on 4 RRP Nb<sub>3</sub>Sn coils
  - Similar campaign as MQXFS7
  - Fast iteration using experience from MQXFS7
- Iterations on MQXFS8, toward lower axial pre-load and possibly azimuthal
  - Investigate the role of axial pre-load and the inter-play between axial and azimuthal
- Test of ESC (Energy Shift with Coupling) on MQXFS 4/8 depending on timeline
  - New collar sets will be procured, and secondary copper coils will be manufacture at 927



# Thermomechanical properties of coil composite material



Date: 19.09.2024

Description of the scope

**Context:** Degradation occurs in some Nb<sub>3</sub>Sn magnets at computed stress below the "limit", some other work at computed stress higher than the "limit" (e.g. 11T can degrade at simulated 60 MPa, RMM can work at simulated 200 MPa).

#### Non exhaustive list of unsolved questions in a general context

- More accurate definition of the stress limit on conductor (3D)
- Model and experimental data are not in phase during cooldown and requires fine tuning (loss of prestress at cold)
- Local structural effect (peak stresses)
- Stress during reaction

#### **Our objectives:**

- Provide harmonized and model adapted experimental data for the coil pack (ID card for each coil)
- Explore and investigate the impact of different parameters:
  - Resin fraction and the use of new fiberglass layout (in collaboration with WP4.3)
  - Conditions during the reaction cycle (in collaboration with WP4.2)
  - ...

Main persons involved: E. Fernandez Mora, O. Sacristian, 927 team



Thermomechanical properties measured on 10-stack samples

10-stack samples are used to extract mechanical properties. However, there exist no standard and no harmonized database.

Phase 1: Solve questions towards standardization

- 1. Relevant sample configuration?
- 2. Stress/strain measurements methods: global vs local?
- 3. Influence of sample's length?
- 4. Effect of contact surfaces?
- 5. Load effect on CTE?

#### Phase 2: Only then...

. . .

- Characterize and compare 10-stack samples of different cables
- Investigate impact of resin fraction, use of new fiber
- Investigate conditions during reaction







Date: 19.09.2024

**TE-HFM Workshop** 

Strain P6

Thermomechanical properties measured on 10-stack samples

#### 1<sup>st</sup> campaign

- Validate fabrication reproducibility
- Validate measurement reproducibility •
- Start to answer some questions • (local vs global, length,...)

#### Sample preparation

- Study case: Flat MQXF cable
- 3x 150 mm long samples were manufactured •



HT preparation

Impregnated samples

Cutting samples

Tests ongoing. Results at the end of September 2024

#### Test plan for next year

- Measure samples with keystone (Q4 2024)
- Repeat measurements at 77K (newly commissioned optical cryostat) (Q1 2025)
- Study samples with different boundary conditions during reaction (Q2 2025)
- Study effect of contact surface, toward a coil representative stack (Q2 2025)

#### Tests to be performed on each samples







Date: 19.09.2024

Perspective work: other methods of characterization

Use innovative characterization methods to extract independent mechanical properties of each material in the cable at the microscopical level.





G. Lenoir et al., IEEE Trans. Appl. Supercond., 5 (2019)





lip plane activation

**TE-HFM Workshop** 

Courtesy of G. Vernassa, ASC 2024

A working group dedicated to the coil composite material study

Working group objectives:

Programme

- Connect people of different institutes within HFM
- Harmonized methods and data analysis
- Build a common database of references and data

https://hfm.web.cern.ch/hfm-working-groups





Date: 19.09.2024

Description of the scope

Development of the splice technology for Nb<sub>3</sub>Sn cables, suitable for high field and integrating the constraints inherent to this superconductor technology.

#### **Outcomes:**

- Possibility of independent layers with internal connection
- Possibility of graded coils with internal splice

#### **Challenges:**

- Compliance with the manufacturing steps: heat treatment, impregnation,...
- Specialized tooling and tight spaces in the splicing area

#### A research plan in 3 phases:

- 1. Initial assessment of splicing process On going
- 2. Process feasibility assessment and qualification On going
- 3. Performance validation in high field Coming

Main persons involved: E. Fernandez Mora, V. Ilardi, K. Lazaridou, R. Piccin, 927 team



Phase 1: Initial assessment of splicing process – Solder analysis

**Goal:** Evaluate different soldering materials by assessing their wettability and melting temperature.

- Solder distribution analysis (tomography, metallography)
- Lead and silver based solders have been tested.
- Indium base solder to be explore further.





Date: 19.09.2024

Phase 2: Process feasibility assessment and qualification – Mock-up of the splice area

**Goal:** Develop specialized tooling and mock-ups to validate the feasibility of the splice in a particular environment specific to each project.





Mock-up developed in 2024 in the context of the 12T cos-theta magnet for internal splice between layers



Courtesy of M. Canale



Date: 19.09.2024

Phase 3: Performance validation – Tests in FRESCA

**Goal:** Validate the splice performance by measuring the resistance at low temperature, and under high magnetic field.

Tests to be carried in the FRESCA test station (and later FRESCA 2) at 9.7 T (or more):

- On a simpler praying hand configuration
  - Validate with experimental data the computed value
  - Test the impact of soldering length
  - Test the impact of reaction cycle
- Validate the quality of splices made with specific tooling representative of the manufacturing process

Firsts measurements to come in Q2 2025 after the commissioning of FRESCA 2.





### HFM High Field Magnets Programme

### Conclusion





Date: 19.09.2024