

High Field Magnets

HFM Forum meeting

FALCON-D CERN 12T dipole status & update plan (HFM RD3 WP3.1) CERN, Geneva, September 19th 2024

Arnaud Foussat, Ezio Todesco, MSC-SMT on behalf of HFM RD3 WP3.1 team.

Outline

- Introduction
- Update of WP3.1 FALCON-D 12T dipole scope
- Achievements within CERN & INFN collaboration
- Deliverables, development plan, 2024-2026 Schedule
- Summary

Introduction

- HFM program entrusted CERN WP3.1 to developed a 12T Nb₃Sn Cos-theta dipole based on models (< 2 m) by 2028, as potential technology for further prototype (~ 5 m long), 14T dipole magnet design by horizon 2030. (indico/1430998/)
- Strategic knowledge and mastering of the cos Θ technology for dipoles as a back-up.
- Uniformized HFM design parameters applied in update design :
 - Around 80%. Iss loadline operation at 1.9K
 - Mid plane stress @RT < 120 Mpa, 150 Mpa @ 4K,
 - Current design J_c (16T @4.2K) = 1200 A/mm²
 - 50 mm aperture, 50 mm equivalent 60° sector width

 Decision from mid 2024 to enhance alignment of both FalconD coils design at INFN (WP3.2) and CERN (WP3.1) to share coil design, gain in margin and field capability, enhance development synergy and favor technical exchanges.

Update of FALCOND WP3.1 dipole scope

- Following June 2024 HFM steering board endorsement, scope of HFM WP3.1 12T Cos-theta Nb₃Sn dipole scope has been aligned with following key guidelines:
 - FalconD coil manufacture both at B927-CERN and ASG (It) industrial site;
 - Baseline magnet models assembly (1-in-1, 2-in-1) based on optimized B&K structure then cold tested at both CERN SM18 and INFN LASA
 - Design of 12T dipole coils based on larger Rutherford Falcon D cable made of 40 x 1.0 mm RRP 162/169 strands, Cu:nCu 0.9. The structures are designed for 14T e.m loads level including 2-in-1.
 - In case of major winding issue due to narrow bending radii, use of previous 0.85 mm QXF cable RRP 108/127 Cu:nCu 1.2.
- CERN FalconD dipole development plan includes early investigation of cos-theta magnet structure candidates (B&K, alu bars + SS shells) on mechanical mockups.
- Note: for long magnet protection purpose (> 5 m), further use of optimised cable (cu/noncu: 1-1.2, low-field stability) needed. Further cable development for 14T 2-in-1 dipole design based on enhanced RRP108/127 strand, and available strands RRP 162/169 - Φ1.1 mm, RRP 60/91 - Φ 0.7 mm

RRP Nb₃Sn wire for WP3.1

Cable	Units	Past WP3.1 12T cos theta	2024 baseline WP3.1 & WP3.2 12T FALCON D (1-in-1)
	-2.0 Glass Braided Steers Dr 0.1000 10.000 -2/ -2/ -2/ -2/ -2/ -2/ -2/ -2/	19_92 mm	
Material		Nb ₃ Sn (RRP 108/127)	Nb ₃ Sn (RRP 162/169)
Strand type name		MQXF	DEM 1 (ERMC-1)
No. strand		40	40
Strand diam.	[mm]	0.850 ± 0.003	1.000 ± 0.003
Cu/NonCu		1.2 ± 0.1	0.9 ± 0.2
Keystone	[º]	0.4	0.5
Jc (@4.2K, 16T)	[A/mm ⁻²]	1200	1200
Heat treat.		665 °C 50 h	650 °C 30-50 h
lc (A)	4.22 K, 12.0 T	> 590	
	4.22 K, 15.0 T	> 331	> 508
Bare cable th. (R)	[mm]	1.59	1.893
Bare cable wd. (R)	[mm]	18.500	21.420
RRR	Round	> 150	> 150
Insulation th.	[mm]	0.150	0.150
Filling factor		0.29	0.35

Reference S Hopkins et al. : doi: 10.1109/TASC.2023.3254497

Current stability versus field

HFM

High Field Magnets

Although RRP162/169 strand shows Jc(B) instability at low field, conductor team found improved heat treatment (reduced plateau time at 650 deg C) which offers factor x2 margin at 12 T
 @ 4K on critical current for magnet model. (Need an optimized cable for design of 14 T dipole).

7

Achievements at CERN & INFN collaboration

- Development and procurement efforts are mutualised following FALCOND dipole HFM strategy (cern.ch/event/1430998/) and last CERN INFN collaboration meeting (/event/1431283/):
- Last progress within CERN-INFN collaboration on key WP3.1 items:
 - Global procurement of insulated RRP[®] 162/169 Nb₃Sn cable 150 m unit lengths (5 out of 12) - in Progress.
 - Mutualised ten stacks fabrication, properties testing at RT and cold in Progress.
 - **On-going coils parts procurement route** common to WP3.2 first sets of machined SS spacers, Glidcop Cu wedges. with further 3D printed spacer investigation;
 - Further dummy winding trial test of multiturns collective blocks behavior
 - Supporting mechanical WP3.1 mock ups to answer pending questions :
 - optimised slit iron yoke structure, separate layers impact, preloading structure variants (B&K + Alu ring vs. Al bar + SS shell)
 - **Optimised tooling to minimise coil movement** (common base for both winding and HT tooling, detachable / non- detachable & impregnated pole option)

8

FALCOND WP3.1 12T design parameters

Coil		1	12T cos Falcon D 1-in		alcon D 1-in-1	21.42 mm	
No. of turns per pole		15-	15+22 = 37		12+24 = 36		
No. Blocks			6		5	1.89	
Insulated cable surface	[mm²]		5259		6859	mm	
Equivalent coil width	[mm]		31.0		37.5	Fig.1 Reacted	DEM1 conductor
Physical length	[m]		1.5		1.5	size	
Coil efficiency	[T.mm/A] 0.	.00078		0.00071		
Magnet		12T collar. (2023)	Falcon b&k (20	12T)24)	1-in-1 Falcon 12T collar. (option)	1-in-1 Falcon Ult. 14T b&k	2-in1 Falcon D 12T
Aperture / interbeam	[mm]	50	50		50	50	50 / 204
Operating temperature	[K]	1.9	1.9		1.9	1.9	1.9
Outer diameter	[mm]	620	640		640	640	640
Nominal current	[kA]	17.750	20.99	91	20.400	24.906	20.400
Strand eng. Je	[A/mm ²]	782	668		650	793	650
Overall Je	[A/mm ²]	489	454		454	554	454
Nominal field Peak field	[T] [T]	12.01 12.42	12.0 12.5	0 3	12.00 12.55	14.00 14.63	12.3 12.56
Ap. to peak field ratio	[%]	3.4	4.4		4.5	4.5	4.5
Load line fraction Temperature margin Inductance Stored energy	[%] [K] [MH/m] [MJ/m]	83.2 4.3 2.64 0.451	77 5.11 2.24 0.543		76 5.17 2.23 0.52	91 2.72 2.19 0.741	76.1 5.14 1.04
Hot spot temp. adia. Horizontal force (per quadr)	[K] [MN/m]	3.32	< 150 3.57	К ,	< 150 K 3.75	< 150 K 4.920	< 150 K 3.88
Vertical force (per quadr) [MN/m]	-2.40	-1.78	3	-1.76	-2.580	-1.77

Fig. 2 5 blocks Falcon D coil section

IBI (T)

Fig.3 LR and LE end, Roxie API models

Fig.4 Falcon D 3D machined spacer vs R&D 3D printed development

Field quality for reference yoke layouts

NURMA	L RELATIVE MU	LITIPULES	(1,U-4):			
ь 1:	10000.00000	b 2:	0,00000	ь 3:	6,17941	NO
ь4:	0,00000	b 5:	-5,44894	ь 6:	-0,00000	b
Ь7:	12,26451	b 8:	0,00000	ь 9:	2,76912	b 4
Ь10:	0,00000	b11:	1,27581	Ь12:	-0,00000	b
b13:	-0,76305	b14:	-0,00000	b15:	-0,23338	b1
Ы16:	-0,00000	b17:	0.06851	Ь18:	-0,00000	b1.
Ы19:	-0,01166	b20:	-0,00000	Ь		b1
						PT.
SKE₩	RELATIVE MULT	IPOLES (:	1.D-4):			CIV.
a 1:	0.00000	a 2:	-0,00000	a 3:	0.00000	SKI
a 4:	-0,00000	a 5:	0,00000	a 6:	-0,00000	
a 7:	0.00000	a 8:	-0,00000	a 9:	0,00000	
a10:	0,00000	a11:	0,00000	a12:	-0,00000	a11
a13:	-0,00000	a14:	0,00000	a15:	-0,00000	a1
a16:	0,00000	a17:	-0,00000	a18:	-0,00000	a10
a19:	-0,00000	a20:	-0,00000	a		a19

Temperature margin (al Jop.Bop.Top)(K)

- L	1001010	C DECHIYE NO	CITL OFF			
0	b 1:	10000.00000	b 2:	-0.00000	b 3:	-0.35560
2	b 4:	0.00808	b 5:	-5.28873	b 6:	-0.80800
0	b 7:	12.59299	b 8:	0.00800	b 9:	2.84277
Ř	b10:	-0.00800	b11:	1.30973	b12:	0.80800
ŏ	b13:	-0.78333	b14:	-0.00800	b15:	-0.23959
×	b16:	0.00800	b17:	0.07033	b18:	-0.00000
	b19:	-0.01196	b20:	0.00000	ь	
~	SKEW	RELATIVE MULT	IPOLES	(1.D-4):		
×	a 1:	0.00800	a 2:	-0.00000	a 3:	0.00000
v	a 4.	8 88888	a 5 -	8 88888	a 6 .	0 00000

RMAL RELATIVE MULTIPOLES (1.D.4)

	0.00000	a	0.00000	a u.	0.00000
:	-0.00000	a 8:	-0.00000	a 9:	-0.0000
:	0.00000	a11:	0.00800	a12:	-0.80800
:	0.00000	a14:	0.00000	a15:	0.00000
:	-0.00000	a17:	0.00000	a18:	-0.00000
:	-0.00800	a20:	0.00800	a	

 On going magnetic optimization of 2-in-1 b&k baseline

b&k structure

Normal	_ RELATIVE MU	LTIPOLES	6 (1.D-4):		
ь 1:	10000,00000	Ь 2:	-6,36052	Ь 3:	1,19488
ь4:	-0,27219	ь 5:	-5,62243	b 6:	-0,00504
Ь7:	14,00333	Ь 8:	-0,00006	Ь 9:	3,28857
Ь10:	-0,00000	b11:	1,57626	Ь12:	-0,00000
Ы3:	-0,98079	b14:	-0,00000	b15:	-0,31209
Ь16:	0,00000	Ь17:	0,09531	Ь18:	0,00000
Ь19:	-0,01687	Ь20 :	-0,00000	Ь	

Collared structure

RELATIVE MU	LTIPOLES	(1.D-4):		
10000.00000	b 2:	7.64871	b 3:	12.01884
0.29926	b 5:	-5.62559	b 6:	0.00931
13.50776	b 8:	0.00027	b 9:	3.17224
0.00001	b11:	1.52050	b12:	0.0000
-0.94609	b14:	0.0000	b15:	-0.30105
0.00000	b17:	0.09194	b18:	0.0000
-0.01627	b20:	-0.0000	b	
	. RELATIVE MU 10000.00000 0.29926 13.50776 0.00001 -0.94609 0.00000 -0.01627	. RELATIVE MULTIPOLES 10000.00000 b 2: 0.29926 b 5: 13.50776 b 8: 0.00001 b11: -0.94609 b14: 0.00000 b17: -0.01627 b20:	. RELATIVE MULTIPOLES (1.D-4): 10000.00000 b 2: 7.64871 0.29926 b 5: -5.62559 13.50776 b 8: 0.00027 0.00001 b11: 1.52050 -0.94609 b14: 0.00000 0.00000 b17: 0.09194 -0.01627 b20: -0.00000	RELATIVE MULTIPOLES (1.D-4): 10000.00000 b 2: 7.64871 b 3: 0.29926 b 5: -5.62559 b 6: 13.50776 b 8: 0.00027 b 9: 0.00001 b11: 1.52056 b12: -0.94609 b14: 0.00000 b15: 0.00000 b17: 0.09194 b18: -0.01627 b20: -0.00000 b

HIGH Field Magnets

19th September 2024 CERN HFM Forum meeting WP3.1 TE-MSC-SMT - AFoussat

10

Cos-O dipole development plan

• CERN-MSC and INFN-Ge, LASA proposed from 2024 the synergetic plan below towards a twin-aperture 12 T, 1.5 m long Nb₃Sn dipole design by 2028.

Date	Description	Length	Remarks	Goals	Institute
Q2-2026	1-in-1 demonstrator magnet (WP3.2)	1.5 m	Construction at INFN LASA, test at INFN, CERN	Cable technology Coil technology Quench performance New b&k structure design	INFN WP3.2
Q3-Q4 2025	Long mechanical mock ups	< 0.5 m	CERN B&K & collars coils section mock up assembly (use 11T coils)	Benchmarked concepts of mechanical cross section structures at RT and cold. Measurement of residual stress	CERN WP3.1
Q3- 2026	1-in-1 demonstrator magnet M1	1.5 m	CERN B&K coils magnet assembly	Novel dipole b&k structure design	CERN WP3.1
Q2-Q4 2027	1-in-1 demonstrator magnet M2a – (option M2b)	1.5 m	CERN B&K coils magnet assembly (CERN collared coils magnet assembly optional)	Optimization of b&k structure design Reproducibility Structure pro's & con's vs scale up	CERN WP3.1
Q2-2028	2-in-1 demonstrator magnet M3	1.5 m	CERN B&K coils 2-in-1 magnet assembly, structure around 12T coils	New 2-in-1 structure, Field optimization, fabrication process, scale-up design inputs for 14T design	CERN WP3.1

Exploratory FE mock-up modelling

- Parametrized FE Dipole quadrant model (fig.1) to investigate impacts on coil stress (RT & cold) of key B&K structure parameters (yoke splits V, H, 45°, 0/90°, key positions, pads thicknesses), mockups pre-dimensioning. - in Progress.
- Sensitivity analysis through methodology of Design of Experiment (DOE) to study material properties ranges.
- Bilinear mechanical properties benchmarking from next Falcon-D cable stack test, smeared model properties inputs.

Fig.1 – FE quadrant parametrized model of FalconD-C (S Gowrishankar)

Fig.5 Pole pressure contact and coil stress criteria used in Falcon D-INFN assessment (Courtesy N.Sala)

	Unit		RE			4.5 K	
		Elastic	Plastic	Avg.	Elastic	Plastic	Av
E_x	GPa	52.6	11.3	31.9	48.0	12.0	- 30
E_{m}	GPa	37.4	11.6	24.5	40.2	12.0	26
E_{a}	GPa	66.1	28.1	47.1	77.2	38.4	- 57
G_{im}	GPa	18.8			17.7		
$G_{N^{\alpha}}$	GPu	19.8			22.5		
G_{acc}	GPa	22.9			24.1		
ν_{xy}	1	0.19			0.24		
10.00	1	0.17			0.16		
Pzz	1	0.23			0.18		
α_{ij}	mm/m	3.65					
α_{y}	mm/m	4.03					
$\alpha_{\rm h}$	mandra	2.33					

Fig.2 - QXF cable smeared properties (Courtesy G. Vallone) DOI: 10.1109/TASC.2023.3248544

High Field Magnets

Fig.3 - bilinear FE stress strain stackFig.4 DOE sensitivity(11T) measurement (Courtesymethodology used in structureO.Sacristan)design (US-FNAL A Zlobin)

WP3.1 FalconD 12T dipole roadmap

• B&K structure models design with Alu ring (ex: QXF, US-MDP concepts)

- Early mechanical properties dedicated tests and exploratory design of structure on mechanical mock ups (B&K + Alu ring, option of collars with SS shell + Alu bars)
- Future optimization on single magnet design of 1-in-1 models towards 2-in-1 • dipole **Single Aperture** Double Long mechanical mock ups **B&K magnet models** aperture B&K **12T dipole** magnet Ref. US-FNA **M3** M1,2 LMK1,2 Conceptual cross sections view: Short mechanical mock up (Hyoke split vs V) 2-in-1 magnet models b&k Variant () Variant 1 Variant 2 11T Alu 11T modified 11T modified Calibration block (Cu Filler OL) (12T floating nose) options (Cu Filler OL) **SMKs**

HFM

High Field Magnets

Overview provisional schedule

• Update schedule of CERN WP3.1 FALCOND-C subtasks on coils and dipole models production

		2024			2	025				2026			2	027		2028			
Development and Demonstrators	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1 - Mechanical mock ups																			
Short mock ups coils sections SMK (11T mod., 12 T) (circ 130mm li	¢	F	Т	D	D	D	F	т											
Long mock ups coil section LMK 1 & 2 (cir. 0.3-0.7 mm long)			D	D	F	т	F	т											
Task 2- Coils production																			
Ten stack, E coil modulus measurement			D	F	Т	D	F	Т											
winding trial, multi turns on 3D printed end spacers			D,T	Т															
Production coil tooling			D	F	F	Т													
Production of 1 dummy Cu coil				D	D	F													
Production of 2 practise coils						D	F	F											
Production of 3 coils (single AP)								D	F	F									
Production of 2 coils (D-AP)										D	F	F							
Task 3- Magnet models production																			
Single aperture magnet model M1					D	D	F	F	т	C -P									
Single aperture magnet model M2						D	D	D	D	F	F	т	C -P						
Single aperture magnet model M3 (Optional)											D	F	F	т	С -Р				
Task 4 - 2-in-1 magnet																			
Double aperture magnet Falcon D model											D	D	F	F	Т	Т	C-P		
	D	Design		т	test asser	mbly													
	F	Fabricat	tion	С	Cold test		P.	Power te	st										

WP3.1 cable production need

Delivery dates

	Bare conductor for insulation	Insulated cable to CERN
1 Dummy Cu cable	March 2025	May 2025
2 units (practise)	Sept-25	Oct-25
3 units	Janv-26	Mars-26
2 units	Jun 2026	Sept-26

Note: Start of first dummy coil WP3.2 winding at ASG on FALCON D-I from Oct.24

WP3.1 CERN coils production schedule

Start of production equipment procurement	Nov' 2024 – May 25
Dummy winding trial tests	Oct' 24 - Mar 25
1 st dummy pole *	June 2025
2 practice coils	Nov 25 - Mar' 26
2 aperture coils	Apr' 26 - Aug' 26
3 aperture coils	Nov'26 - Mar'27

* Start of first dummy pole WP3.2 winding at ASG from 10.24

Summary

- Mutualization of WP3.1 (CERN) and WP3.2 (INFN) FalconD 12T dipole coils designs following last HFM steering board,
- WP3.1 is used to investigate few structure variants, provide benchmarked inputs for single design optimization towards 2-in-1 magnet construction.
 - Step-by-step approach with mechanical mock ups for specific parameters impacts study.
- **Baseline design and roadmap strategy clarified** for an integrated design of 1-in-1 then 2-in-1 12T dipole magnet models till 2028 based on past experience.
- Updated schedule with procurement plan from 2025 for 12T coils WP3.1 manufacture scope (dummy, 2p + 5 coils) and structure.
- Dedicated collaboration CERN-INFN group meetings on FALCOND activities on design, tooling, parts procurement and production QA follow up.

References

)

- 2023 TE-MSC Strategy & Implementation Update for High Field Magnet (HFM) Part 1: LTS, EDMS 2816918 3-0
- 12 T VE Preliminary Design Review report , July 5, 2023, CERN : https://indico.cern.ch/event/1294868/
- IPAC 2024 conference, *Mechanical design of the 12 T superconducting dipole. An accelerator-fit, Nb*₃*Sn double aperture magnet,* M Masci, D Perini, L Baudin , DOI: <u>10.18429/JACoW-IPAC2024-WEPS63</u>
- 12-14T cos theta HFM WP3.1 Working indico directory: //indico.cern.ch/category/15243/
- Technical Design Report of the FalconD Nb3Sn Cos-Theta Dipole Model for the FCC-hh at CERN, INFN/Code-19/001, Indico1086175
- 2024 update HFM program structure. https://hfm.web.cern.ch/
- INFN CERN collaboration ADDENDUM FCC-GOV-CC-CC-0004/17.10.2014 (KE4102/FCC) : Design and manufacturing of a single-aperture, 12 T short model superconducting Nb3Sn dipole magnet, designed and assembled according to the bladder-and-key technology

Publications:

- R. Valente et al., Status on the Development of the NbSn 12 T Falcon Dipole for the FCC-hh, IEEE trans. Appl. Supercond., 34 (3), 2024
- R. Valente et al., Optimization of Electromagnetic Design After Winding Tests for the Nb3Sn Cos-Theta Dipole Model for FCC-hh, IEEE trans. Appl. Supercond., 33 (5), 2023
- F. Levi et al., Updates on the Mechanical Design of FalconD, a Nb3Sn Cosθ Short Model Dipole for FCC-hh, IEEE trans. Appl. Supercond., 33 (5), 2023
- A. Pampaloni et al., Mechanical Design of FalconD, a Nb3Sn Cosθ Short Model Dipole for the FCC, IEEE trans. Appl. Supercond., 32 (6), 2022
- A. Pampaloni et al., Preliminary Design of the Nb3Sn cosθ Short Model for the FCC, IEEE trans. Appl. Supercond., 31 (5), 2021

Thank you for your attention

High Field Magnets

WP3.1-FALCOND-C main tasks

• Task 1: Mechanical mock ups (using existing 11T coil sections)

- Short mock ups (150 mm) mechanical test with new separate 11T layers collared coil sections. Benchmarking with FE analysis.
- Long structure test mock ups concept (0.3-0.6 m)
- LMK1 mock up to investigate B&K on selected CERN design variant (Alu shell, pads, B&K), cool down at 77K
- LMK2 mock up to provide fast-track preliminary technical assessment on a collared coil design with Alu safety bars.

Task 2: Coils production

- Impregnated ten-stacks (5) for mechanical and thermal properties (under progress)
- 1-in-1 models: 1 dummy copper, 2 practises + 5 coils of 1.5 m long, UL of 140 m,

Task 3: Single aperture 12T dipole FALCOND-C models

• Two models single aperture (AP 50 mm) dipoles (M1, M2) with B&K structure being optimised, as a variant of FALCOND-I. Any alternative structure under review.

Task 4: Double aperture 12T dipole FALCOND-C model

• Magnetic and mechanical design of the double aperture in line with the single aperture models design baseline, optimised cables, possible grading, cold tested

Design legacy

The 12 T HFM FalconD dipole development magnet finds legacy from past development of high field dipole magnet at FNAL (HD, HFDA), ELIN CERN dipole magnet (1986) SSC (1992) and the last MBH dipole development (2015-2021) on **CERN HL-LHC Project** Stainless steel Electrical bus

SSC dipole (BNL)

MBH test mirror (FNAL, Zlobin)

Dipole magnet topology development at FNAL,

Fig. 4.13 Simplified cross section of the Mirror Test. Define I - coll; 2, I certral post parts: (copper shield; 5 - iron mirror; 6 iron yoka: 7 - shrinking extinde:

Elin – CERN 10.2 T Nb3sn dipole model (1986) tested in magnetic mirror (AP diameter 50 mm)

Drawings CDD equipment code

 Newly FALCON-D equipment codes CRNMHFD_for manufacture drawings management both at CERN and INFN/ASG

Equipment code	CAD topic
CRNMHFDA	 CERN <u>Coil</u> components & Assembly for High Field 12T Dipole Short model (HFM - Falcon D).
CRNMHFDB	 INFN <u>C</u>oil components & Assembly for High Field 12T Dipole Short model (HFM - Falcon D).
CRNMHFDAM	• CERN <u>Magnet components & Assembly for High Field 12T Dipole Short model</u> (HFM - Falcon D).
CRNMHFDBM	 INFN <u>Magnet components</u> & Assembly for High Field 12T Dipole Short model (HFM - Falcon D).
CRNMHFDMK	• <u>Mock</u> -ups for High Field 12T Dipole Short model (HFM - Falcon D).
CRNMHFDTA	• CERN <u>T</u> ooling for High Field 12T Dipole Short model (HFM - Falcon D).
CRNMHFDTB	• INFN <u>T</u> ooling for High Field 12T Dipole Short model (HFM - Falcon D).

FalconD cable features

Non reacted conductor dimensions

Parameter	Expected Values
number of strand	$40(2 \times 20)$
keystone angle	0.5°
fiberglass insulation thickness	0.15 mm
strand twist pitch	120 mm
bare width (unreacted/reacted)	21.000 mm / 21.420 mm
bare thin edge (unreacted/reacted)	1.720 mm / 1.797 mm
bare mid-thick edge (unreacted/reacted)	1.812 mm / 1.893 mm
bare thick edge (unreacted/reacted)	1.903 mm / 1.989 mm
Nb ₃ Sn area	16.53 mm ² (34.7766%)
Cu area	14.88 mm ² (33.1516%)
fiberglass insulation area	6.844 mm ² (15.2461%)
void area	6.629 mm ² (14.7671%)
tot, area of cable	44.89 mm ² (100%)
θ_{pitch} , strand twist pitch angle	19.29°
PF, packing factor	0.747
ct, deformation cable edge	-9.4%
cw, deformation cable width	-4.2%
c, overall deformation	86.8%
k_t , thin edge compaction (keystoned cable)	91.3%

Table 1: FalconD DEM-1 conductor type parameters

8-2 Glass Braided Sleeve

th.= 0.145mm ±0.005

WP3.1 procurement plan

Planning of procurement	Groups					20	024										20	025														
	1	М	Α	М	J	J	А	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N	D	J								
SHORT Mockups																																
MK1 - OFH wedges, loadplate shims, Kapton sheets	MSC																															
MK2 - collar nose,, shims, Kapton sheets	MSC																															
MK3 - collars, packs shims, Kapton sheets	ENMME, MSC																															
MK4 - collars, packs, shims kapton sheet	MSC																															
MK4 - 12T wedges	MSC																															
MK4 - 12T short coils section (2)	MSC																															
LONG mock ups																																
Iron yoke laminations	ENMME																															
Alu shells	EN MME																															
shims, Kapton sheets, protection sheets	MSC																															
LMK1 - coils pads, B&K, pole	MSC																															
LMK2 - Alu stoppers bars	ENMME																															
LMK2 - 11T long coil sections metrology	EN MME																															
LMK 2 - Half shells (4), protec strips	MSC																															
Production tooling																																
winding mandrel, jigs	EN MME																															
Heat treatment mould	EN MME																															
Curing jig	EN MME																															
Impregnation mould	EN MME																															
Coils components and practise coils																																
Dummy coil (1)																																
Practise coils (2)	MSC																															
End spacers WP3.1 WP3.2	MSC, EN MME																															
Copper wedges WP3.1 WP3.2	MSC, EN MME																															
Bare cable WP3.1 WP3.2	MSC																															
Insulated cable WP3.1 WP3.2	MSC																															
Planning of procurement	Crauna					20						i						0.05						1			20	126				
	Groups		1	1		20	24	1	1	1	1		1	1	1	1	21	1	1	1	1	1	1				21	120		_		_
Middel Single aperture 121 B&K																					-		-			_	-		+	\rightarrow	+	—
M1 - 121 model cons wedges, spacers	IVISC, EIVIVIIVIE															-		-	-				-			_	-		+	\rightarrow	-+	—
M1 - 121 coll pads, bladders & keys																			-	-						_	-		+	\rightarrow	-+	—
M1 - 121 quench neaters	NISC																		-	-	-	-	-			_			+	\rightarrow	-+	—
M1 medal coils (2)	MSC								-					-			-										-		+	-+	+	+-
M1- model cons (2)	ENLANAE								-					-													-		+	-+	+	+-
M1 and plates rods									-					-					-					-			-		+	-+	+	+
M1 Alushalls	LIN IVIIVIE								-					-				-	+	-	-						-		+	-+	\rightarrow	+
M1 - Alu shelis	WIGC, EN WIWE																	-	-	-	-	-	-		_	_	-		+	\rightarrow	+	+
Model Single gnerture 12T collared																							-			_	-		+	\rightarrow	-	—
Macroshigic upcrate 127 contact	MSC ENMME																-		+								-		+	\rightarrow		+
M2 - 12T moder cons wedges, spaces	EN MME																-		+								-		+	\rightarrow		+
M2 - Ouench beaters	MSC																-		+						_				+	\rightarrow		+-
M2- model coils (2)	MSC																+		+										+ +			+
M2 - voke laminations	EN MME																-		+										++		+	+-
M2 - end plates rods	EN MME																												+	-		+-
M2 - Alu shells	MSC EN MME																												+	-		+
																													+		+	<u> </u>
Model double aperture 12T collared																													+		_	+
M3 - 12T model coils wedges, spacers	MSC. ENMME																												+		_	+
M3 - 12T coil pads, bladders & keys	EN MME								1							1													+		+	
M3- 2-in-1 model coils (4)	MSC								1							1																
M3 - yoke laminations	EN MME								1		1				1		1		1													
M3 - end plates, rods	EN MME								1																							+
M3 - Alu Shell	MSC, EN MME								1																							<u> </u>
M3 - end plates, rods M3 - Alu Shell	EN MME MSC, EN MME																													\pm	\pm	土

HFM High Field Magnets

Ten-stack 11T cable properties

EDMS_2208499

HFM

High Field Magnets

Wire properties

DEM. 1 Strand										
Jacoba Ja										
d (mm)		1.000 ± 0.003								
Layout		162/169								
d _s (µm)		< 60								
Cu/non-Cu		0.9 ± 0.2								
Nb:Sn		3.4 (std. Sn)								
Heat treat.		650 °C 50 h								
I _c (A)	4.22 K, 12.0 T									
	4.22 K, 15.0 T	> 508								
	4.22 K, 16.0 T	> 395								
n-value		> 30								
RRR	Round	> 150								
	Rolled	> 100								

	HL-J	LHC	H	FM
Property	11 T	MQXF	ERMC-1	DEM-1.1
Diameter (mm)	0.7	0.85	1.0	1.1
RRP [®] Layout	108	127	162	/169
$d_s (\mu m)^*$	45	55	58	64
Cu/non-Cu b	1.15 ± 0.1	1.2 ± 0.1	0.9 ± 0.2	0.9 ± 0.2
Nb:Sn	3.6 (red)	uced Sn)	3.4 (standard Sn)	
Standard heat	650 °C	665 °C	650 °C	665 °C
treatment c	50 h	50 h	50 h	50 h
RRR, round d	309 ± 35	345 ± 40	290 ± 33	266 ± 39
RRR, rolled d	174 ± 29	215 ± 29	206 ± 27	203 ± 36

*Geometrical sub-element diameter

^bRange of Cu/non-Cu permitted by specification

^c Final plateau of the manufacturer's final recommended heat treatment cycle; RRP⁸ heat treatments begin with plateaus of 48 h at 210 °C and 48 h at 400 °C

 d Residual resistivity ratio measured in CERN acceptance tests (mean \pm standard deviation) after the standard heat treatment, for round wire and after rolling with a diameter reduction of 15 %

Characteristics of RRP wires

Reference ERMC-1 wire S Hopkins et al. : doi: 10.1109/TASC.2023.3254497

Field quality / protection

 field quality is considered a secondary objective of the project, therefore the cable block longitudinal position is not optimized to minimize the integrated harmonics

Field quality		Falcon 12T single	Falcon 14T double *
Harmonic b3 at I _{nom}	[10-4]	-0.35	0.106
Harmonic b5 at I _{nom}	[10-4]	-5.28	0.18
Harmonic b7 at I _{nom}	[10-4]	12.59	0.18
Harmonic b2 max	[10-4]	0	0.025
Harmonic b3 at I _{ini}	[10-4]	?	?

Protection		Falcon 12T single
Coil energy density	[J/mm³]	0.09
J copper	[A/mm ²]	1439
Time margin	[ms]	45
Hotspot (adiab.)	[K]	130
Harmonic b3 at I _{ini}	[10 ⁻⁴]	?

* Under progress, design discussion within FALCON D

Falcon D quench protection range (adiabatic) $MIITs(T) = A^2 \int_{T_a}^{T} \frac{\gamma(T) C_p(T)}{\rho(B, RRR, T)} dT = \int_{t_a}^{\infty} I^2 dt$

Adiabatic temperature case of 1.5 m Falcon D 0.9 mm • RRP162/169 strand based coil model w/o dump

About 44-50 ms left to quench during validation time ۲

250

LHC MB in

Open items

- Well known instabilities observed on Falcon D cable and cumulative offset during first Cu dummy cable trial by INFN at CERN, to be further characterized.
- Further winding parameters need optimisation per winding machine, (ex: at ASG use rolling but not the yaw, with the spool rotating around the winding bench)
- Expected deviation of 4-5 mm of conductor block tip in coil heads wrt. envelop to be confirmed, filled for mechanical preload.

FALCOND WP3.1 towards 14T design

- Design work in progress within collaboration, Option C, 1-in-1 presented by *R. Valente (INFN) at ASC conf. 2024*.
- Current design based on as of today existing strands using grading (22 strands Ø 1.1 mm HF, 38 strands Ø 0.7 mm LF)

Bore field 14 T	HF	LF
Peak field [T]	14.33	12.17
Temperature [K]	1	.9
j overall [A/mm ²]	329	448
j sc [A/mm ²]	939	1554
Loadline fraction [%]	78	75
Temperature margin [K]	4.51	5.34
Equivalent width [mm]	49	9.4
N° of turn (per quadrant)	32	68

Glossary

Equivalent coil width: width of a 60° sector coil whose area is the same of the area of the layout that we are considering.

$$w_{eq} = r\left(\sqrt{1 + \frac{3A}{2\pi r^2}} - 1\right)$$

where r is the aperture radius and A the area of the insulated cable.

Coil efficiency: Ratio between the field and the current times the coil width, given in [T.mm/A].

$$\gamma = \frac{B}{jw_{eq}}$$

Can be compared with $\gamma_0 = 6.625 \times 10^4$ T.mm/A (found for a 60° 2-sector coil cancelling b3 and b5 [0°,48°], [60°,72°] case.

Peak field ratio: The ratio λ between peak field and central field can be used as a marker for good optimization. It is a function of the coil shape and can fit with the function:

$$\lambda = 1 + a \frac{w_{eq}}{r}$$

E. Todesco, Masterclass – Design of superconducting magnet for particle accelerator – Unit 4

L. Rossi and E. Todesco, Electromagnetic design of superconducting dipoles based on sector coils, Phys. Rev. STAB, 10 (11), 2007