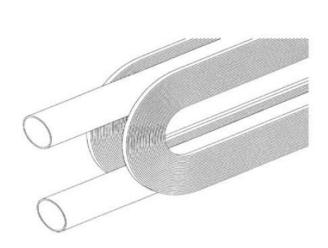


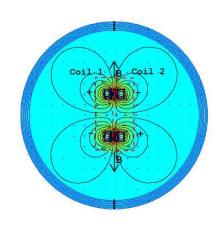
HFM

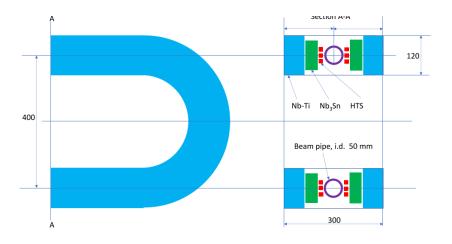
High Field Magnets
Programme

TE-HFM Workshop

RD2: HTS Program


A. Ballarino19/09/2024


A. Ballarino, C. Barth, A. Baskys, J. Mazet, D. Perini N. Gal, M. Masci, A. Shaba, G. Succi



Strategy

- MSC HFM HTS Activities, EDMS 2685835, Jan 2022
 - REBCO Conductor, Iron Based Superconductors
 - **REBCO Tape:** procurement, characterization, optimization via interface with tape manufacturers
 - Iron Based Superconductors: development of wire via R&D. Production at the collaborator(s)'s site(s)
 - REBCO Coils: Short Model Coil Program, from racetracks to Common Coil Dipole demonstrator

Common Coil (BNL)

Common Coil (EDMS 2685835)

Tests in SM-18 (EDMS 2685835)

Structure – RD2

	Deliverable	Description	Start date	End date		
	Specification document		01.01.2023	30.09.2025		
WP2-T1 Procurement REBCO			30.09.2023	31.12.2025		
conductor	EBCO Tape procurement - Phase 2 HFM FCC		30.06.2025	31.12.2028		
	EBCO Tape procurement - Solenoids		30.09.2023	31.12.2023		
	C Definition and implementation, including reproducibility and		30.03.2023	31.12.2023		
	caling of performance		01.06.2023	31.12.2023		
	ontinuous Critical Current Measurement set-up (liquid nitrogen,					
	5 K - 77 K): procurement/development, installation and		01.10.2023	31.12.2024		
	ommissioning					
	est station for higher temperatures (20 K- 50 K, 1 T to 2 T):	Important also for				
	rocurement, design and construction of components,	critical current scaling	01.01.2025	31.12.2026		
	stallation and commissioning					
WP2-T2 Characterization	serts for split coils (10 T) and solenoid (20 T)	As from 2026				
	quid nitrogen test station for coils		01.01.2024	31.12.2025	REBCO Conducto	
	ualification of splices, cables and coils: inserts for	Synergy with Nb ₃ Sn			NEBOO Conducto	
	easurements at 77 K and 4.2 K . Design, construction and	conductor WP1	01.10.2023	31.12.2028	*	
	ommissioning ooling and consumables (sample holders for various					
	easurements at 77 K and 4.2 K, instrumentation, connectors,		01.10.2023	31.12.2028		
	oling for miscroscopic analysis, liquid nitrogen,)		01.10.2023	31.12.2028		
	leasurement of REBCO in external high field laboratories	Grenoble/FSU	01.03.2024	31.12.2028		
		Cabling/braiding				
	able concepts and cabling equipment (R&D)	machine	01.01.2024	31.12.2026		
WP2-T3 Development of	ectrical insulation and impregnation techniques	Oven/Impregnation	01.01.2024	31.12.2028		
REBCO cables	estree made of an impregnation techniques	facility	31.01.2024	31.12.2020		
	oating technologies	Tinning and coatings for	01.01.2024	31.12.2028		
		cable properties	01.10.2024	24 42 2025		
	finding tests and winding/cabling equipment (long units)	Winding machine(s)	01.10.2024	31.12.2025		
		(LN ₂) and 163 (LHe).				
	TS prototype coils. Concepts, modelling, assembly, test	Background fields: 12.5				
		T and 15 T				
	leasurement of REBCO solenoids in external high field	1 0110 25 1				
WP2-T4 Development of	horatories	Grenoble/FSU				
small prototype coils		Tests in buildings 288				
	TS Racetrack model coils. Concepts, modelling, assembly, test	and SM-18			DEDOO O "	
	ybrid model coils. Concepts, modelling, assembly, test	Tests in SM-18			REBCO Coils	
		Synergy with Nb ₃ Sn				
	b ₃ Sn Outserts for racetracks	Magnet WP				
WP2-T5 Magnet	igh field demonstrator(s): Common Coil Design. Concepts,	5 T @ 4.2 K and 10 K in				
	odelling, design, manufacturing, assembly	background of 15 T				
demonstrator(s)	igh field demonstrator(s): Solenoids. Concepts, modelling, design,					
demonstrator(s)	anufacturing, assembly. Budget includes specific winding	Up to 30 T				
	puinment/machine					
WP2-T6 Other	ther superconductors and low-field applications				Other HTS	
Superconductors and low-					얼땐댈 [[[]	

Implementation of strategy – Progress - Milestones

REBCO Iron Based Superconductors

Demonstrator Coils and Milestones

Laboratory

Procurement of Tape

Procurement of tape based on Technical Specification (synergy with HL-LHC WP6a). IT-4924, 'Supply of REBCO Coated Conductor for the HFM Programme', was dispatched on 9th October 2023 to six firms. Tape started to be delivered in May 2024

Parameter	Minimum	Maximum	Target	Reference		
Critical Current, Ic, per width (A/cm)						
at 4.2 K and 20 T	800	-	-	§ 3.3.1		
at 20 K and 20 T	375	-	-			
Engineering Critical Current Density, J _e (A/mm ²)						
at 4.2 K and 20 T	-	-	≥ 1500	§ 3.3.1		
at 20 K and 20 T	-	-	≥ 700			
Nominal substrate thickness (μm)	38	60	-	§§ 3.5 and 3.4.1		
Nominal copper Stabiliser thickness, each face (µm)	5	-	20	§ 3.4.3		
Minimum out-of-plane bend radius (mm)	-	20	≤ 10	§§ 3.3.3		
Internal Resistance (nΩ cm²)						
for a test duration of 0 h	-	100	≤ 60 ¹	§§ 3.3.2 and 9.1.2		
for a test duration of 1 h	_	125	≤ 60 ¹	und 7.1.2		
Piece Length (m)	100	-	≥ 200 ²	§ 3.3.5		

New (outcome of WP6 Activities)

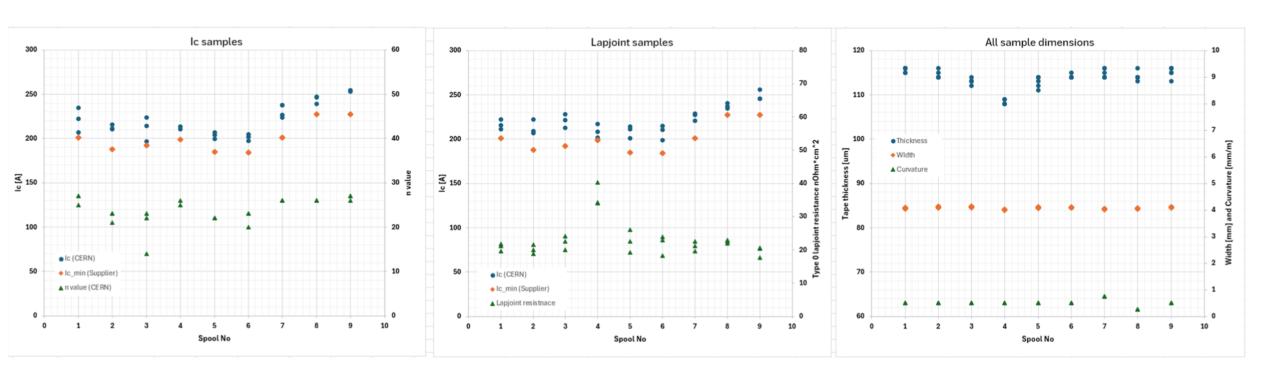
200 ± 5 °C ≤ 50 °C/min

Orders placed and status of deliveries

Delivery
delayed
because of
identified
*NCs (HL-LHC
WP6a Activity)

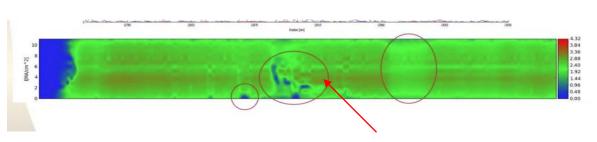
Supplier	Line Item	Lot	Leat time (mo)	Quantity (m)	Min. Piece length (m)	Width (mm)	Copper (mm), per side	Solder coating	Delivered length (m)	Delivered % of order	Order submitted	Receipt delay (days)
SST	1	1	4.5	1500	100	2	0.02	No	O	0.0%	03/04/2024	26
SST	2	1	4.5	1500	100	2	0.02	Pb37Sn63	0	0.0%	03/04/2024	26
SST	3	2	4.5	3500	100	4	0.02	Pb37Sn63	0	0.0%	03/04/2024	26
SST	4	2	4.5	3500	100	4	0.02	No	0	0.0%	03/04/2024	26
SST	5	2	4.5	1000	100	4	0	No	0	0.0%	03/04/2024	26
SST	6	2	. 2	2100	100	4	0.01	No	102	4.9%	03/04/2024	101
SST	7	3	4.5	800	100	12	0.02	Pb37Sn63	0	0.0%	03/04/2024	26
SST	8	3	4.5	800	100	12	0.02	No	0	0.0%	03/04/2024	26
Superpower	1	1	. 8	550	100	2	0.02	No	0	0.0%	03/04/2024	-79
Superpower	4	2	. 5	1100	100	4	0.02	No	0	0.0%	03/04/2024	11
Superpower	7	3	4	220	100	12	0.02	No	0	0.0%	03/04/2024	41
Faraday Factory	1	2	. 2	1000	100	4	0.02	No	0	0.0%	11/04/2024	93
Faraday Factory	2	2	. 6	7300	100	4	0.02	No	1344	18.4%	11/04/2024	-27
Faraday Factory	3	2	. 2	2000	100	4	0.02	Sn60Pb40	O	0.0%	11/04/2024	93
Faraday Factory	5	3	2	200	100	12	0.02	No	200	100.0%	11/04/2024	
Faraday Factory	6	3	2	1500	100	12	0.02	No	1500	100.0%	11/04/2024	
Fujikura	1	1	. 2	1000	30	2	0.02	No	1000	100.0%	03/04/2024	
Fujikura	2	2			100		0.02		1000		03/04/2024	
Fujikura	3	2			100		0.02		2000		03/04/2024	
Fujikura	4	3			100		0.02		200		03/04/2024	
Fujikura	5	3			100		0.02		400		03/04/2024	

Identified *NC


Deliveries started in Q2 2024

TOT ~ 32 km

*Identified Non-Conformities (NC) would have an impact on coils' performance. Iteration with manufacturers on-going



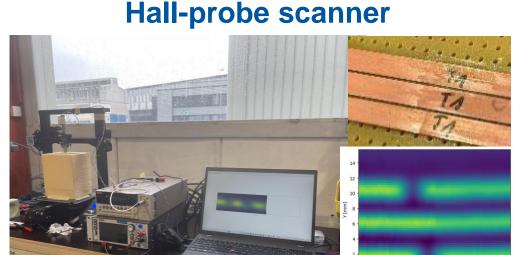
QA of delivered REBCO tape

New Equipment

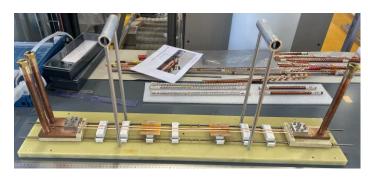
Procured: THEVA Tapestar™ XL-HF Reel-to-reel set-up for critical current

- Common throughout the industry
- High throughput (200 m/h)
- Can accommodate tape 2 12 mm wide
- Subcooling to ~67 K
- Variable magnetic field to 1 T
- Tape marking (to mark length and defect positions)
- Yields information on Ic along the tape
 length as well as information on defects
- Accuracy ±3 % (calibration required)
- Compact footprint (2.7 x 1 m)

Delivered in August 2024 (on schedule)


New set-ups

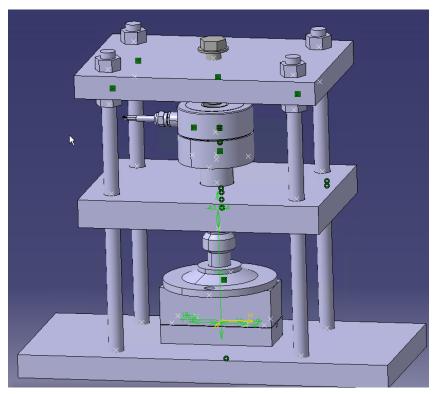
Critical current, magnetization and indirect measurements

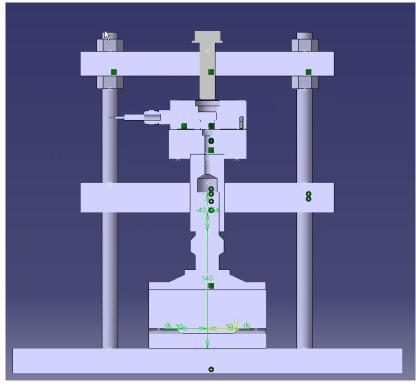


Acceptance tests
77 K at s.f.

I_c and lap-joint

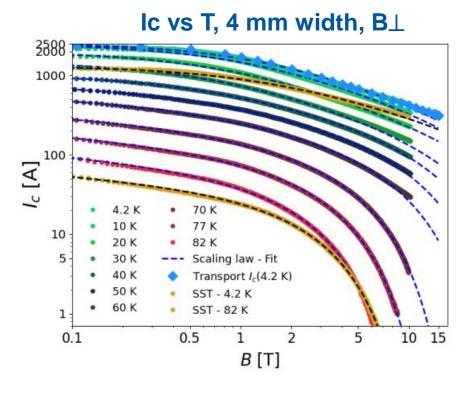
U-shape 0-15 T at 4.2 K Vibrating sample magnetometer 0-10 T, 4.2–80 K


Extracted strand testing 77 K, s.f.



Contact resistance vs pressure

Current distribution in REBCO cables



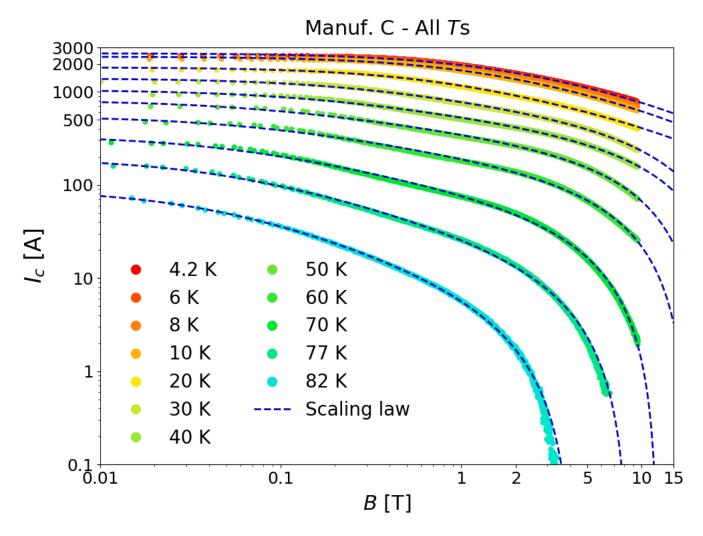
Measurements at CERN and Scaling Law

Ic @ 4.2 K, 4 mm width, B⊥ 3800 3000 2500 2000 1500 Shanghai ST; ST-4-E Shanghai ST; ST-4-E (older) Faraday Factory; For in-field use SuperPower; SCS4050-AP Theva; TPL4421-HP Fujikura; FESC-SCH04 200 0.1 10

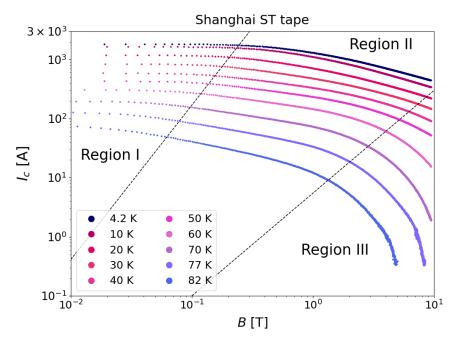
Direct measurements

B[T]

Magnetization measurements



Creation of a database on REBCO tape properties



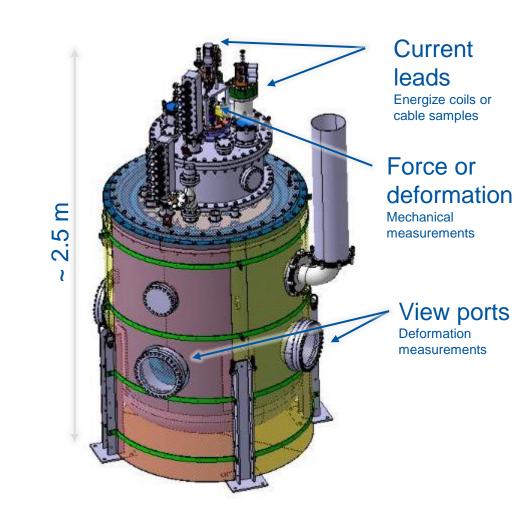
0.01

Measurements at CERN and Scaling Law

$$I_c(B, T = T^*, \theta = \theta^*) = I_{c,0}^* \cdot \left(1 + \frac{B}{B_0^*}\right)^{-\alpha^*} \cdot \left(1 - \frac{B}{B_{irr}^*}\right)^{q^*}$$

- Hundreds of measurements in the last few months
- Focus ALSO on Ic at low fields

G. Succi et al, proceedings of ASC 2024



Test Infrastructure

Design and manufacture of **multipurpose cryostat** (operational in spring 2025). Highlights:

- Liquid helium or variable temperature He gas cooling
- Sample volume 0.6 x 0.6 x 0.6 m
- Four viewports for optical measurements
- Flexible feed-through for mechanical measurements
- 2 kA HTS current leads, with space for 2 more
- Mu-metal magnetic shielding
- Operation at 2.5 bar

Synergies with Collaborators

Iron Based Superconductors at SPIN, Genova.

Development of multi-filamentary iron based round wire. To date: production/synthesis of powder with the highest achievable purity. Production and characterization of mono-filamentary PIT Ba-122 wires. React&Wind.

Target Jc: 10⁵ A/cm² @ 4.5 K and 16 T, 10⁴ A/cm² @ 20 K, 10 T

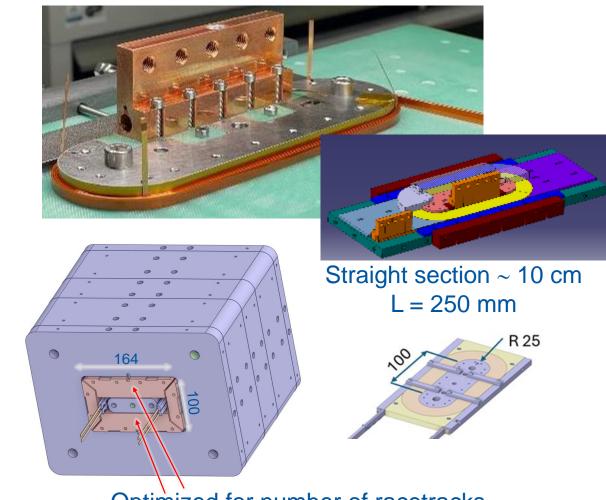
Industry has already declared interest in joining the effort.

REBCO tape at KIT, Karlsruhe: production of REBCO tapes (12 mm width). Study of specific aspects, e.g. origin of internal (in between layers) resistance in tapes

Width~2 mm, Thickness~0.4 mm Short samples (~ 2 m long)

Implementation of strategy – Progress - Milestones

REBCO Iron Based Superconductors

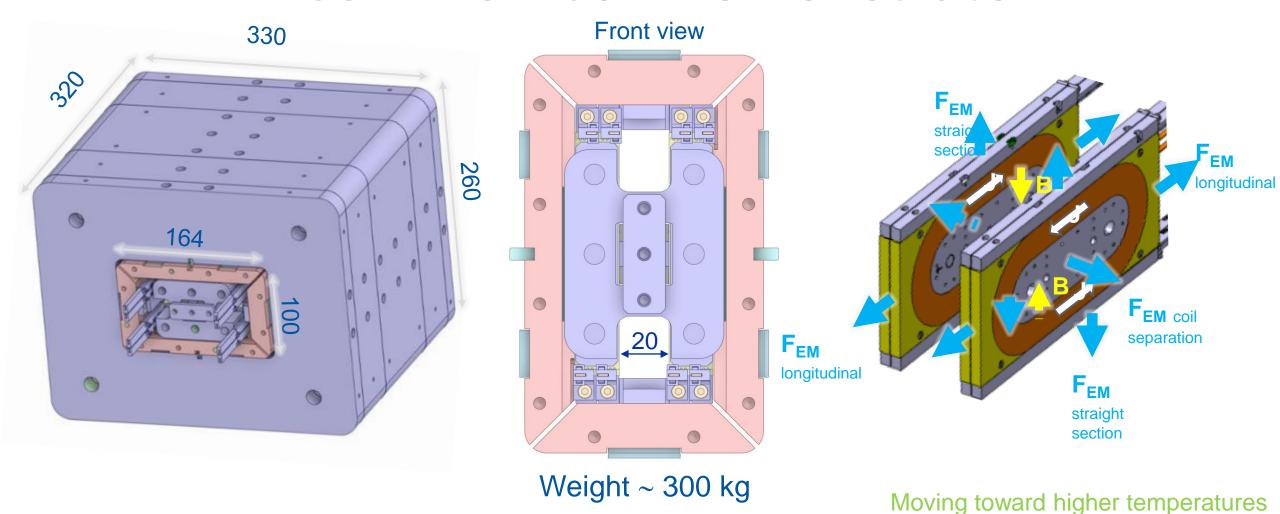

Demonstrator Coils and Milestones

Laboratory

REBCO Cables and Coils

Modular approach, Intermediate milestones

- Racetrack Model Program
 - Single Racetrack Demonstrators. Fast throughput. Development of winding techniques, qualification of different REBCO cables (as from Q2 2024)
 - Double Racetrack Demonstrators (as from Q3 2024)
- Mechanical structure for Common Coil Demonstrators (CCD):
 - Two Double Racetracks (3 T at 4.5 K)
 - Four Double Racetracks (5 T at 4.5 K)
 - Six Double Racetracks (10 T at 4.5 K)


Optimized for number of racetracks

Development of electrically insulated REBCO cables

Common Coil Demonstrator

Coils will be measured also at higher temperatures For there double racetracks: Bbore = 10 T @ 4.5 K, Bpeak = 12.7 T @ 4.5, \sim 7.7 T @ **20 K**)

Winding machine

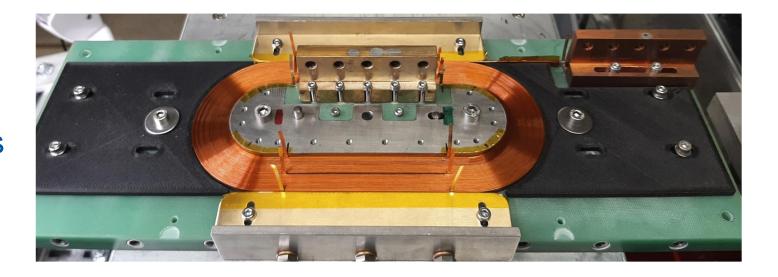
Winding table from TE MSC MDT.

Modification of the winding system with the addition of motors/brakes.

System able to wind and keep in tension up to **7 tapes** in parallel

Parameter	Value				
HTS tape	4 mm wide from SST				
Required I _c @ 12.5 T	> 550 A				
Number of HTS tapes	4				
Additional copper	2 x 100 μm				
Insulation thickness	100 - 150 µm Kapton				

Up to 2 kA (Je = 625 A/mm^2)



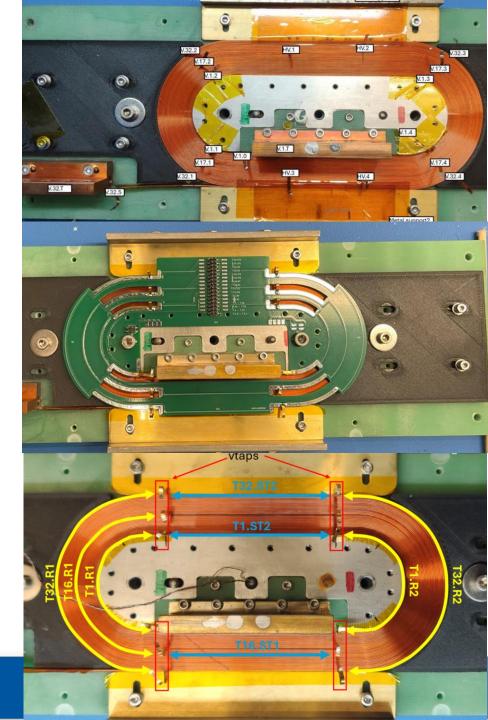
Racetrack Coils

Produced in 2024:

- **Two** dummy **copper** racetracks
- Three REBCO single racetracks
 Characterized in liquid nitrogen
- One REBCO double racetrack

Development of test procedure for **localizing** and **analyzing defects** after measurement of the **coil**

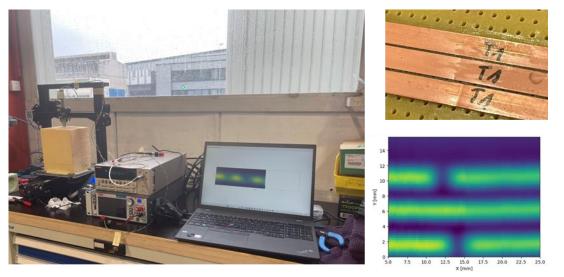
Racetrack coils

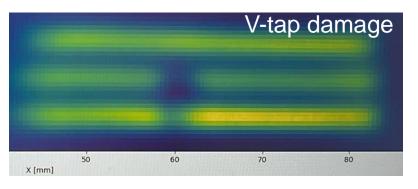

 RC1: Winding problem in the first layer (popping out of tape). New tooling and winding procedure implemented in RC2 Tape manufacturer: SST

RC2: Conductor locally damaged by V-tap.
 Developed new procedure for implementing V-taps in the coil. Implemented in RC3
 Tape manufacturer: SST

- RC3: Coil conform. After qualification, launched assembly of double pancake
Tape manufacturer: Faraday Factory

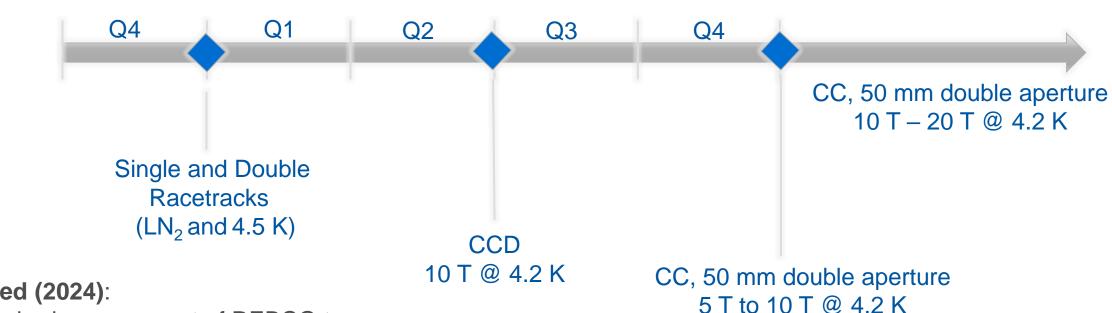
For all coils, successful HV tests (5 kV at RT)




Racetrack coils – Measurements at 77 K

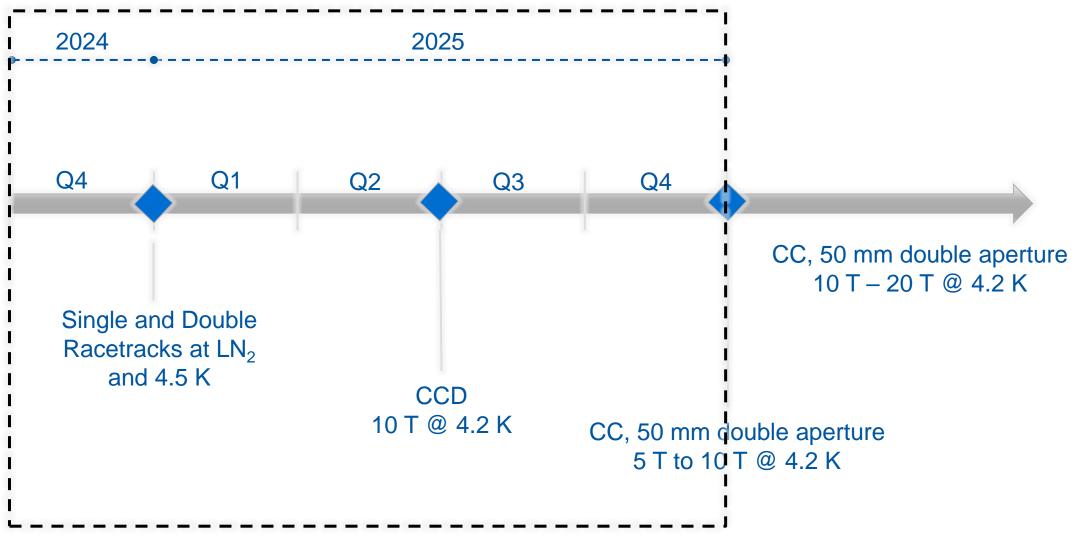
- RC1 and RC2 showed small reduction in Ic wrt calculated values. We decided to go through a post-test analysis. This enabled identification and localization of defects as well as development of a dedicated procedure
- Quench protection worked as expected (LN₂, lower current). Vth
 10 mV. No damage of the coils after quench

Hall Probe Scanner for identification of sub-mm size defects



Direct current measurement of extracted tape

Upcoming Milestone



Achieved (2024):

- Launched procurement of REBCO tape
- Procured THEVA TapestarTM
- Launched Racetrack Model Coil Program (Single and Double racetracks)
- Developed REBCO Tape test equipment

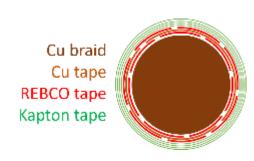
Upcoming Milestones

Development of cables, with different layouts, tested in a single racetrack configuration

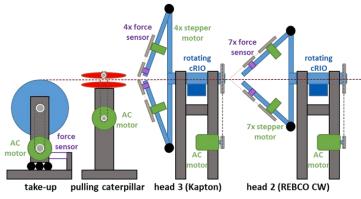
New winding machine

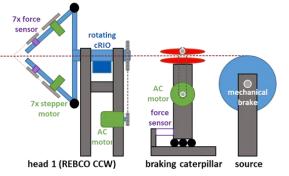
Toward higher fields

- On-going development for operation in 2025
- Winding of up to 22 tapes
- Electronic control of tension of each tape


Upcoming milestones

- Procurement of a laser cutting machine, to be used also for implementing striations in a tape
- On-going survey with tape manufacturers and laboratories to identify technical specification and potential suppliers


Other Cables and Magnet Geometries


Round REBCO Cables, HL-LHC WP6a Cabling machine operated in building 927

Up to 18 kA @ 25 K, s.f.



On-going study

Cos-theta geometry

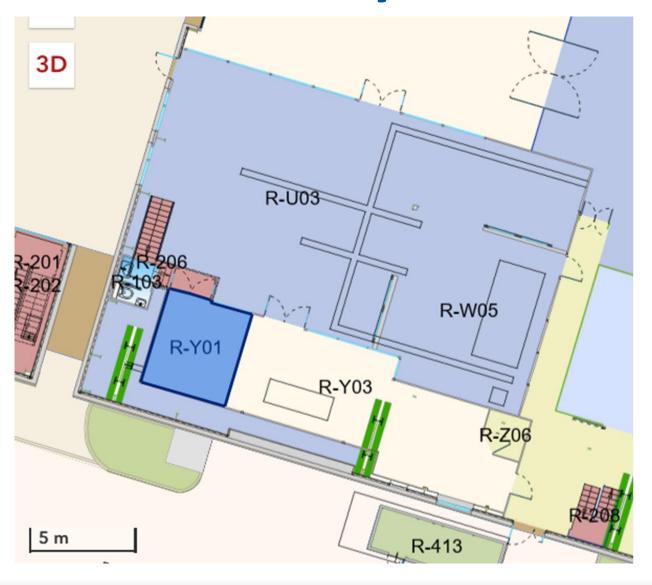
Suitable for CCT coils – activities at LBNL

Implementation of strategy – Progress - Milestones

REBCO

Iron Based Superconductors

Demonstrator Coils and Milestones


Laboratory

Laboratory for HTS activities

- A dedicated laboratory for HTS activities
- It will be used for:
 - Conductor analysis and related equipment (optical image, SEM, reel-to-reel measurements at RT and in LN₂,...)
 - Cable short length development
 - Measurements in LN₂
 - Coil winding and assembly
- Tooling for CCD will be installed in the new laboratory

Laboratory for HTS activities

Building 180, Jura corner. Ground floor

