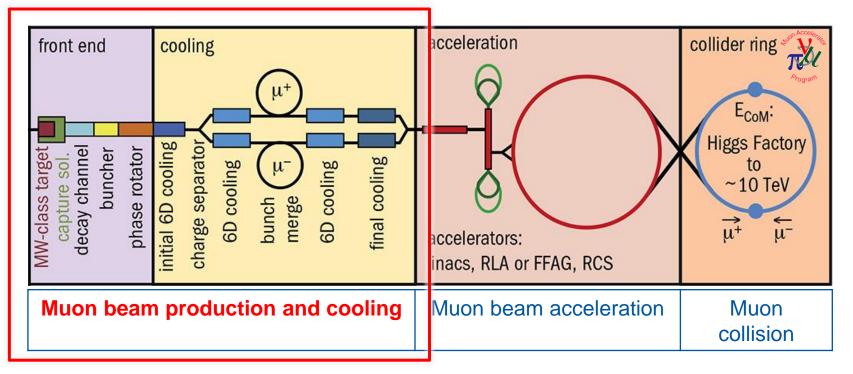
HFM – WP2.6 Solenoids for the Muon Collider^(*)

Presented by L. Bottura, CERN

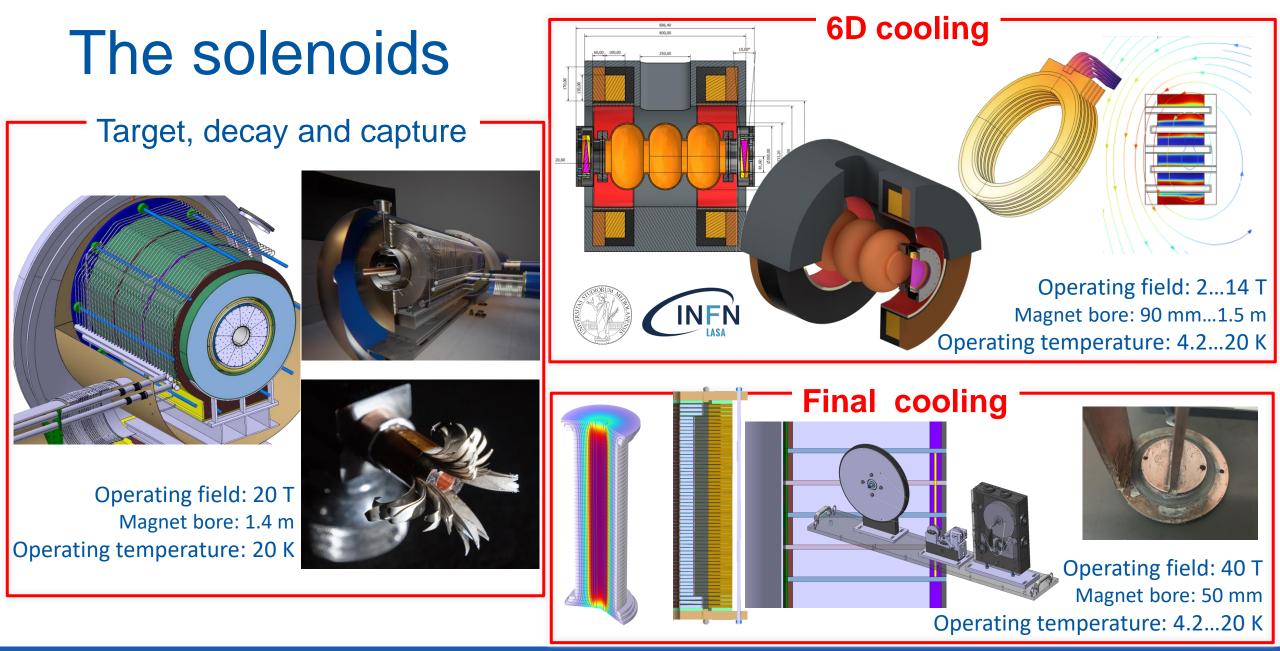
TE-HFM workshop – 19 September 2024

(*) proposal to rename the WP


Outline

- Scope of the work package
- Recent advances
- Plans, milestones and deliverables

Outline


- Scope of the work package
- Recent advances
- Plans, milestones and deliverables

MuCo

Scope of the work package

MC.HFM High-field magnet technologies

The goal is to develop realistic targets for the high-field magnet specifications and to develop an R&D programme to demonstrate them, where they are beyond the state of the art. The emphasis is on high-field solenoids in the muon production and cooling complex since they are unique for colliders. In particular:

- Assessment of realistic target parameters for the superconducting collider ring magnets. This contains theoretical studies that translate the progress of the High-field Magnet programme into the specific case of the muon collider.
- Assessment of realistic target parameters for the superconducting final muon cooling solenoids, aiming well beyond 30 T and ideally for 50 T. The solenoids have small apertures and the luminosity will be roughly proportional to their field. This includes theoretical studies using input from the High-Field Magnet programme and other developments.
- Assessment of realistic target parameters for the 6D muon cooling solenoids, which form the main part of the system. The goal is to use HTS solenoids instead of Nb₃Sn technology for field strength of 20 to 25 T, well above the level in the MAP study. This may allow a shorter system and improve both the muon survival rate and the emittance. (*MIN*)
- Assessment of realistic target parameters for the solenoid system around the target in order to understand the strong constraints arising from the large aperture and the high-radiation environment. Higher field corresponds to a higher capture rate of muons. (*MIN*)
- Testing and characterisation of cables and potentially the design and construction of models for the target solenoid at lower fields (around 30 T) to improve the understanding of the technology and to prepare the development of prototypes. (*MIN*)
- Testing and characterisation of cables and potentially the construction of models for the 6D solenoid. The closer packing, larger aperture but lower field places different demands on the technology than for the final solenoids. (ASP)
- Design of the solenoid for the test module in **MC.MOD**. This might use less ambitious specifications and technologies than the 6D cooling solenoid models. (*ASP*)
- Conceptual design of the target solenoid. (ASP)

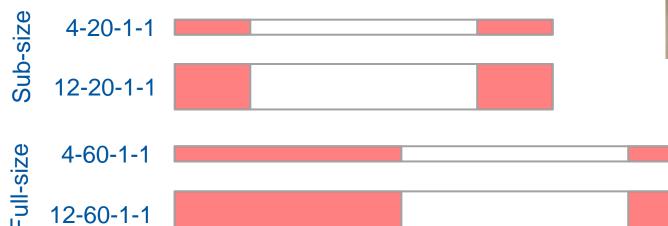
Bright Muon Beams, European Strategy for Particle Physics -Accelerator R&D Roadmap, 2022, ISBN: 9789290836216

Support efforts of the solenoid R&D for a Muon Collider performed in the scope of IMCC, and specifically:

- "Assessment of realistic target parameters [...] well beyond 30 T [...] This includes theoretical studies using input from the High-Field Magnet programme"
- "Assessment of realistic target parameters for the 6D muon cooling solenoids [...] The goal is to use HTS solenoids"
- Integrate technology advances in HTS magnet technology from and to other work packages:

•

The development of [...] magnets for a muon collider [...] will be addressed by targeted studies, but the (HFM) R&D [...] will be highly relevant in developing suitable solutions



R&D Pancakes

Singe and stacked pancake tests planned to validate the concept and identify issues/solutions towards assessing the performance limits.

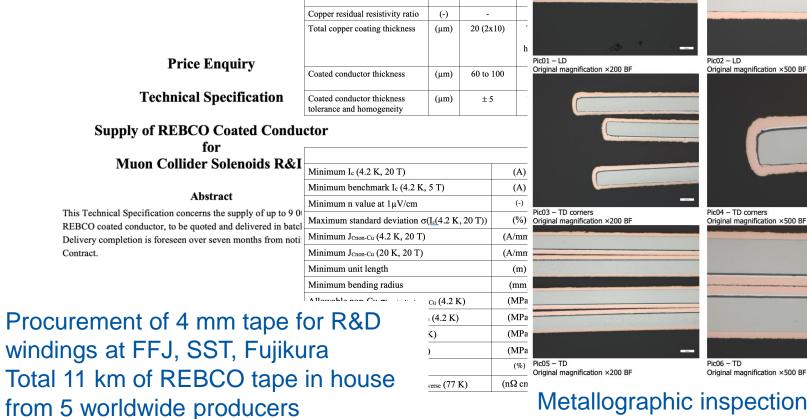
- 60 mm inner diameter
- 20 mm and 60 mm thickness
- 4 mm and 12 mm tape width
- Single and double pancakes winding
- One- and two-in-hand winding

Field reach: 15...25 T

Winding trials EP-ADO Tooling and material test EN-MME

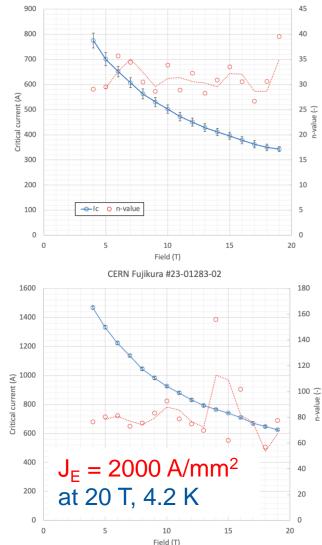
Are solenoids relevant?

- Solenoid model coils built with modest conductor lengths and size (few km) can probe performance limits at extreme values:
 - Field (20 T...40 T) high and ultra-high field characterization of the critical surface $J_C(B,T,\alpha)$
 - Force and stress (500 MPa...700 Mpa) engineering test at levels relevant and beyond full-size accelerator magnets
 - Current density (600 A/mm²...900 A/mm²) and energy density (300 MJ/m³) quench detection and protection in a new regime, where present technical solutions may not work (detection time would be too short, quench heater power would be too high)
- "Simple" engineering, fast turnaround samples



Outline

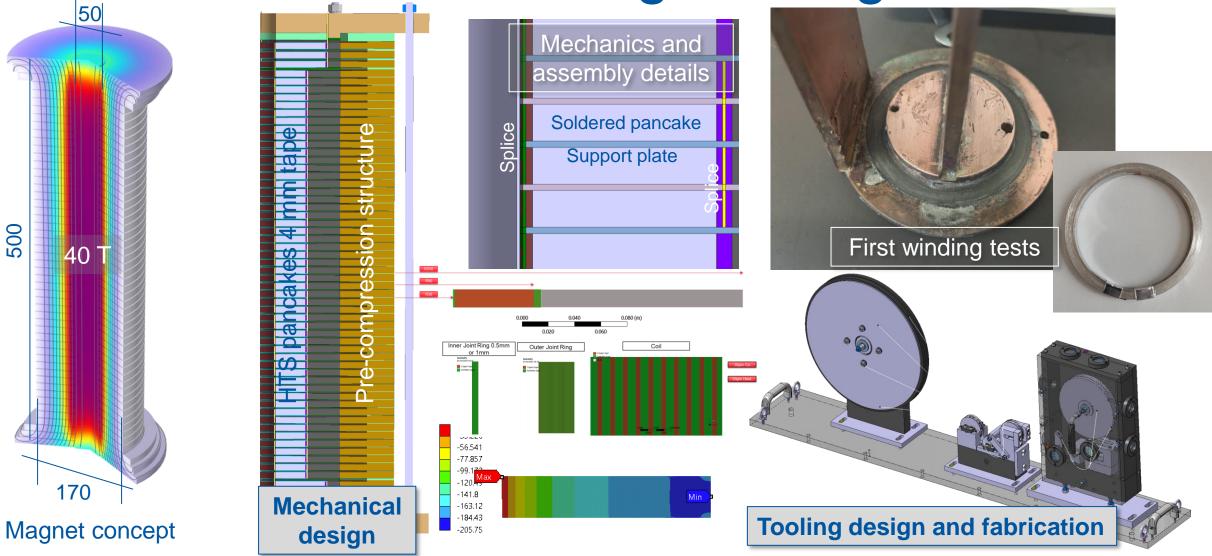
- Scope of the work package
- Recent advances
- Plans, milestones and deliverables


Recent advances – tapes CERN SST #1 ST2403-02 900 800 700 European Organization for Nuclear Research Geometry and composition parameters Specified Organisation européenne pour la recherche nucléaire Nominal coated conductor width (mm) 4.0 ± 0.050 600 High-strength Substrate material (A) alloy 500 Substrate thickness

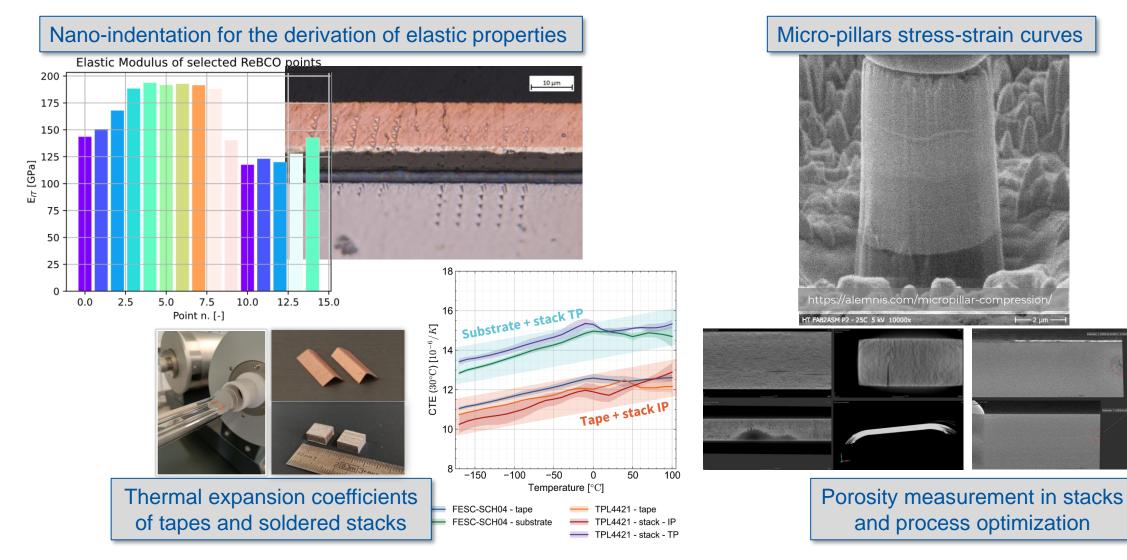
 (μm)

40 to 60

Metallographic inspections and surface analysis



Critical current measurement


EDMS No. 2960999

Recent advances – engineering

Recent advances – material tests

cea

MINES Saint-Étienne

Outline

- Scope of the work package
- Recent advances
- Plans, milestones and deliverables

Plan - overview

WP2.6-T1	UHF solenoids - General study work	01/01/23	01/06/27	
WP2.6-T1.1	Review and define conductor requirements for UHF compact solenoids	01/01/23	30/05/23	Completed
WP2.6-T1.2	Review and define performance specifications for UHF solenoids	01/01/23	30/09/23	Completed
	Define reference geometries and estimate material needs for technology R&D	01/01/23	30/04/23	Completed
WP2.6-T1.3	Review material options for HF and UHF HTS solenoids (REBCO, Bi-2212, Bi-2223, IBS)	01/01/23	30/03/24	Delayed because the MuCol collaborator (University of Southampton) did not have enough resources to provide input material. Move this task by 18 months
WP2.6-T1.4	Cost and power estimate	01/01/23	01/06/27	First cost estimate available
WP2.6-T2	UHF solenoids - Conductor procurement and characterization	01/01/23	01/05/27	
WP2.6-T2-D1	Short samples for initial screening	01/01/23	01/05/27	Completed, material in measurement
WP2.6-T2-D2	Procurement of 9+3 km 4 mm tape for UHF solenoids R&D - phase I	01/05/23	30/06/24	Material in house and being qualified. One of the producers has to replace the present delivery because of a quality issue discovered after delivery
WP2.6-T2-D3	CERN - Procurement of 5 km 12 mm tape for UHF solenoids R&D - phase II	01/09/25	30/03/26	Delayed by 6 months (start in September 2025) and material reference to 12 mm tapes, same budget as from previous plan
WP2.6-T2-D4	CERN - Procurement of 15 km 12 mm tape for UHF solenoids R&D - phase III	01/01/29	30/06/29	NEW: Follow-up to complement needs for material into prototyping phase
	UNIGE - Technology Performance Limits experiment (delamination) at University of Geneva	01/01/25	31/12/26	NEW: Follow-up of MuCol activities of tailored testing of HTS electro-mechanical limits (delamination) and extended characterization (angles and temperature)
	TWENTE - Mechanical and electro-mechanical properties and degradation limits	01/01/25	31/12/26	NEW: Follow-up of MuCol activities of tailored testing of HTS electro-mechanical limits (stress and strain)
WP2.6-T3	UHF solenoids - Engineering study and performance validation	Sun 01/01/23	Tue 31/12/24	
WP2.6-T3-D1	CERN - engineering design of UHF final cooling solenoid	Sun 01/01/23	Tue 31/12/24	Approaching completion for small coils and first release of full-size UHF final cooling solenoid
WP2.6-T3-D2	2 CERN - study of large bore 6D cooling solenoid	01/01/25	30/6/26	NEW: Engineering study of 6D cooling solenoids for the accelerator - note that the demonstration and prototyping (RFMFTF) is done by INFN within the scope oif MuCol
WP2.6-T3-D3	CERN - components and tooling for UHF final cooling	01/01/25	31/12/26	NEW: Complement to MuCol small-scale coil construction and test. Additional components for UHF final cooling solenoid

Plan – General study work

WP2.6-T1.1	Review and define conductor requirements for UHF compact solenoids	01/01/23	30/05/23	Completed
WP2.6-T1.2	Review and define performance specifications for UHF solenoids	01/01/23	30/09/23	Completed
	Define reference geometries and estimate material needs for technology R&D	01/01/23	30/04/23	Completed
WP2.6-T1.3	Review material options for HF and UHF HTS solenoids (REBCO, Bi-2212, Bi- 2223, IBS)	01/01/23	30/03/24	Delayed because the MuCol collaborator (University of Southampton) did not have enough resources to provide input material. Move this task by 18 months
WP2.6-T1.4	Cost and power estimate	01/01/23	01/06/27	First cost estimate available

Plan – Conductor procurement and characterization

WP2.6-T2-D1	Short samples for initial screening	01/01/23	01/05/27	Completed, material in measurement
WP2.6-T2-D2	Procurement of 9+3 km 4 mm tape for UHF solenoids R&D - phase I	01/05/23	30/06/24	Material in house and being qualified. One of the producers has to replace the present delivery because of a quality issue discovered after delivery
	CERN - Procurement of 5 km 12 mm tape for UHF solenoids R&D - phase II	01/09/25	30/03/26	Delayed by 6 months (start in September 2025) and material reference to 12 mm tapes, same budget as from previous plan
WP2.6-T2-D4	CERN - Procurement of 15 km 12 mm tape for UHF solenoids R&D - phase III	01/01/29	30/06/29	NEW: Follow-up to complement needs for material into prototyping phase
	UNIGE - Technology Performance Limits experiment (delamination) at University of Geneva	01/01/25	31/12/26	NEW: Follow-up of MuCol activities of tailored testing of HTS electro-mechanical limits (delamination) and extended characterization (angles and temperature)
	TWENTE - Technology Performance Limits experiment - mechanical and electro-mechanical properties and degradation limits	01/01/25	31/12/26	NEW: Follow-up of MuCol activities of tailored testing of HTS electro-mechanical limits (stress and strain), was proposed in November 2023

NOTE: Work in collaboration could be part of existing agreements

Plan – Engineering study and performance validation

WP2.6-T3-D1	CERN - engineering design of UHF final cooling solenoid	01/01/23	31/12/24	Approaching completion for small coils and first release of full-size UHF final cooling solenoid
WP2.6-T3-D2	CERN - study of large bore 6D cooling solenoid	01/01/25	30/6/26	NEW: Engineering study of 6D cooling solenoids for the accelerator - note that the demonstration and prototyping (RFMFTF) is done by INFN within the scope of MuCol
WP2.6-T3-D3	CERN - components and tooling for UHF final cooling	01/01/25	31/12/26	NEW: Complement to MuCol small-scale coil construction and test. Additional components for UHF final cooling solenoid

NOTE: We expect test results on first pancake coils by end 2024, experimental activity to pick-up in 2025, to produce the planned deliverables for MuCol, IMCC and in support of the ESPPU cycle

NOTE: Components and tooling activities for UHF final cooling are likely to continue and expand after 31/12/26 moving towards a reduced-scale prototype, and eventually a full-scale prototype (2029-2030)

Summary and perspective

- The magnet activities in the scope of the International Muon Collider Collaboration (IMCC) and the EU design study MuCol have a strong focus on HF and UHF HTS solenoids
 - We wish to probe the limits of present technology, and define the R&D required to achieve such performance (MuCol and ESPP deliverable)
 - This work is instrumental to achieving the muon collider luminosity targets (i.e. performance beyond US-MAP)
- This technology development connects directly to the R&D in the scope of HFM
 - Share technology challenges and advances, and profit from capabilities within RD2 (e.g. KC4)
 - Recall that the technology developed is also relevant for other magnets, such as arc dipoles and IR quadrupoles for the Muon Collider (steady state)
- Proposal initiate "code sharing", calling common meetings of mmWG and RD2.6

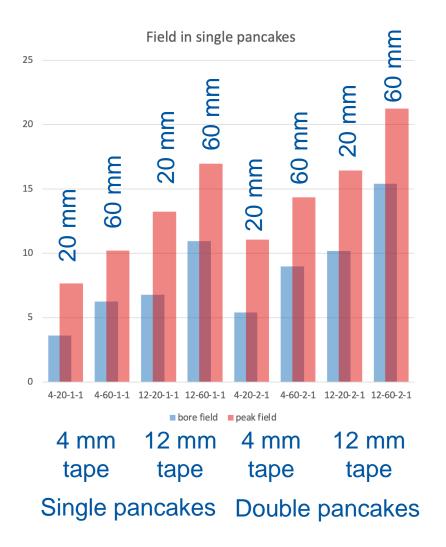
Risk register and mitigation (the plan)

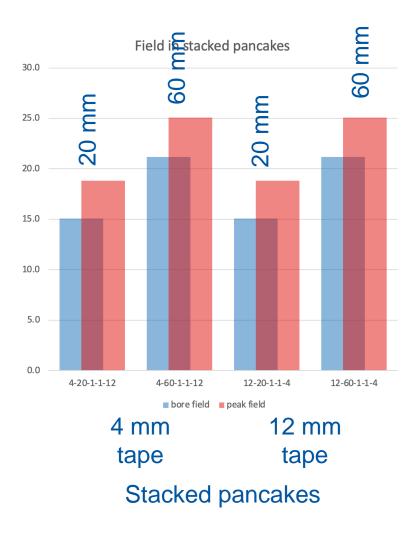
Risk	Mitigation action (program)		Tests (tape length)
Reaching field/sub- optimal performance	Use pancakes to test performance (force compare to expected performance from concerned of complete Ic(B,T,angle) scaling)	· · · · · · · · · · · · · · · · · · ·	10 sub-size (500) 5 full-size (1250)
Tape degradation during coil manufacturing	Test performance before/after winding at previous item. Dedicated tests to be performed by bancakes and transitions, joints		10 sub-size (500)
Coil internal mechanics and mechanical properties	Instrumented stacks and dummy pancak and distributions. Reinforcements and bo		20 stacks (200) 10 dummy (500) 10 sub-size loading (500)
Coil external mechanics and pre-load	Pre-loading structure development and te	ests	5 dummy (250) 5 sub-size loading (250) 5 full-size loading (1250)
Inter-turn resistance control and variants	Produce baseline windings (e.g. soldered variants introducing intrinsic and extrinsic	· · · · · · · · · · · · · · · · · · ·	15 sub-size (750)
Joints resistance and stability	Produce test configuration for pancake jo electrical/mechanical test. Integrate joints resistance and stability (force and therma	s in pancakes and test	20 single joints (200) 10 sub-size (500) 2 full-size (500)
Quench detection	Introduce and test diagnostics in above to for comparison	ests. Select baseline (voltage ?)	Use above pancakes for dedicated tests
Quench protection	Test energy release and temperature inclusion spontaneous quenches	rease in provoked and	Use above pancakes for dedicated tests
Coil dynamic forces	Test mini-coil stacks of pancakes		12 full-size (3000)

Total approximately 10 km of 4 mm tape

HTS tape specifications – 1/2

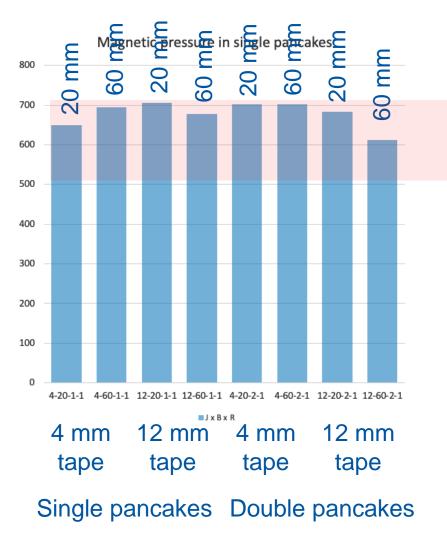
Geometry and composition parameters		Specified	Comments	
Nominal coated conductor width (mm)		4.0 ± 0.050	After copper coating	
Substrate material		High-strength alloy	Non-magnetic alloy such as Hastelloy C-276	
Substrate thickness	(µm)	40 to 60	Acceptable range, must remain constant through production	
Copper residual resistivity ratio	(-)	-	Expected range is 30 to 100	
Total copper coating thickness	(µm)	20 (2x10)	This thickness is intended as total, <u>i.e.</u> twice the thickness of a homogeneous coating on both faces of the coated conductor	
Coated conductor thickness	(µm)	60 to 100	Acceptable range, must remain constant through production	
Coated conductor thickness tolerance and homogeneity	(µm)	± 5	There must be no dog-boning and bulges after copper coating	

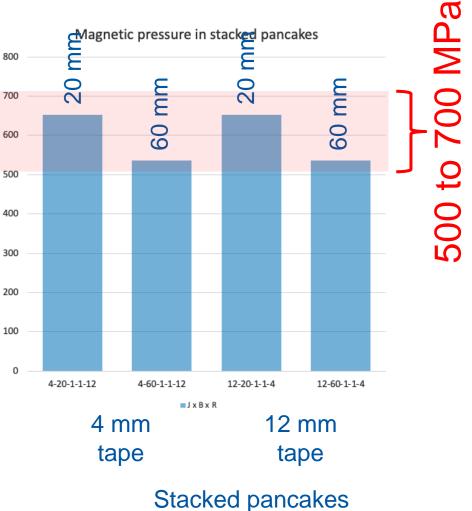



HTS tape specifications – 2/2

		Specification	Target
Minimum I _c (4.2 K, 20 T)	(A)	240	480
Minimum benchmark Ic (4.2 K, 5 T)	(A)	577	
Minimum n value at 1µV/cm	(-)	15	
Maximum standard deviation $\sigma(\underline{I_{c}}(4.2 \text{ K}, 20 \text{ T}))$	(%)	-	5
Minimum J _{Cnon-Cu} (4.2 K, 20 T)	(A/mm ²)	-	3000
Minimum J _{Cnon-Cu} (20 K, 20 T)	(A/mm ²)	-	1200
Minimum unit length	(m)	200	1000
Minimum bending radius	(mm)	10	5
Allowable non-Cu $\sigma_{\text{longitudinal non-Cu}}$ (4.2 K)	(MPa)	800	1000
Allowable compressive $\sigma_{\text{transverse}}$ (4.2 K)	(MPa)	300	600
Allowable tensile ortransverse (4.2 K)	(MPa)	> 5	50
Allowable shear $\tau_{\text{transverse}}$ (4.2 K)	(MPa)	> 5	50
Range of allowable Elongitudinal	(%)	-0.10.4	-0.10.5
Internal specific resistance $\rho_{\text{transverse}}$ (77 K)	$(n\Omega \text{ cm}^2)$	-	20

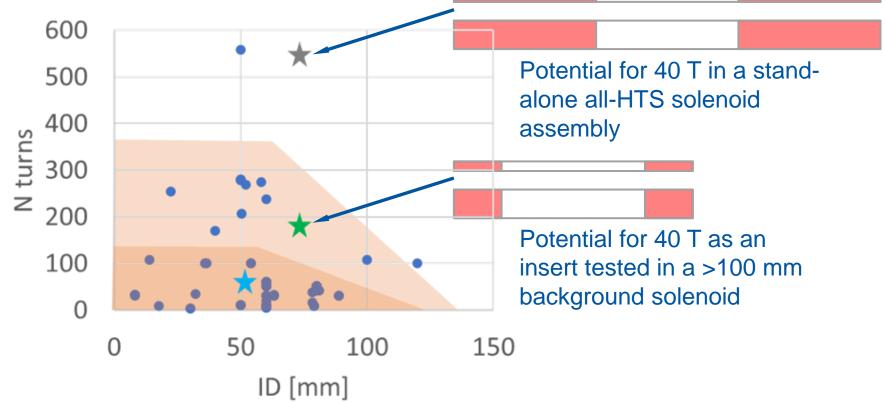
Magnetic field reach





MuC final cooling 40 T: 700 MPa

Magnetic pressure



R&D Pancakes – 2/2

The R&D pancakes will probe geometry and operating conditions well beyond the present state-of-the-art

Courtesy of S. Sorti, UMIL and INFN LASA 24