

"Conceptual ideas of ultra-ligthweight self-supported mechanics and cold gas cooling for ITS 3, recent prototyping and thermomechanical tests, perspectives for application in ALICE 3 design"

 G. Feofilov, V. Zherebchevsky, V.Samsonov Saint-Petersburg State University Reported by G.Feofilov
 ITS-upgrade WP5 meeting, 11 June 2024, 4:00 PM → 5:00 PM Europe/Zurich

https://indico.cern.ch/event/1425295/

Introduction - motivation

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Introduction - motivation

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Corrado Gargiulo, ALICE Upgrade Week, 03/05/2022

IDEA 1-- general assembly issues: Integration of barrel layers and end cap disks of the the Outer Tracker with the beam-pipe of ALICE 3

IDEA 1-- general assembly issues: Integration of barrel layers and end cap disks of the the Outer Tracker with the beam-pipe of ALICE 3

Conceptual layout by Sergey IGOLKIN

- Clam shell
- RigidCF+honecomb
- Integration with the beam-pipe and IRIS

Questions:

- 1. How to cool and to drain heat?
- CTE compatibility of large area thin Si-pixel sensors and CF?

G.Feofilov et al., 4D tracker meeting/ALICE 3/ 15 October 2021

Calculations (by A.Marova) of loads and flows of cold dry air cooling for ALICE 3

		Length, m	Weight, g	Weight, g	Full area, m ²	Heat flux (for q=20 mW/cm ²), kW	Heat flux (for q=140 mW/cm ²), kW	Main results				
	Radius, cm		(for 20 μm silicon layer thickness)	(for 50 μm silicon layer thickness)				Block	Weight, kg (for 20 µm	Weight, kg (for 50 µm	Heat flux (for heat	Heat flux (for heat
Cylinders								thickness)	laver	donaity	donaity	
C1	4,2	1,2	15,3	38,2	0,63	0,06	0,02		uneknessy	thickness)	a=20	a=140
C2	6,6		30,5	76,3	1,00	0,09	0,03			unenness)	q=20	q=140
C3	12		45,8	114,5	1,81	0,17	0,05				kW	kW
C4	19		61,1	152,7	2,87	0,28	0,07	C	0.244	0 6 1 1	1.0	0.2
C5	28		91,6	229,0	4,22	0,41	0,1	C	0,244	0,011	1,0	0,5
LC1	45	2,6	340,6	851,4	14,70	1,42	0,37	LC	1,396	3,491	5,8	1,5
LC2	59		442,7	1106,8	19,28	1,86	0,48	D	0.098	0.247	0.4	0.1
LC3	80		613,0	1532,5	26,14	2,52	0,66		0.086	2,467	4 1	°,= 1 1
Discs							0,980	2,407	4,1	1,1		
D1-D6	33	-		41,1	0,68	0,07	0,02	<u>Sum</u>	2,724	6,816	11,3	3,0
			16,4	(for all of	(for all	(for all of	(for all of	102				
			(for all of	discs:	of	discs: <u>0,4</u>)	discs: <u>0,1</u>)					
			discs: <u>98,4</u>)	<u>246,6</u>)	discs:							$\cap \cap \cap$
				205 5	<u>4,08</u>)	0.24	0.00			1.·		444
LD1- LD12	75	-	82.2	205,5 (for all of	3,54 (for all	0,34 (for all of	0,09 (for all of		$\left(\right) \left(\right) \left(\right) \left(\right) \right)$			
			(for all of	(IOF all OF discs:	of	(10f all 0l)	(IOF all Of discs: 1 1)					A A A
			discs: 986.4)	2466 ()	discs:	uists: <u>4,1</u>)	uists: <u>1,1</u>)				LD6	
			<u></u>	<u>4700,0</u>)	<u>42,48</u>)				[]	D1	D3	
<u>Sum</u> 2725,4 6814,0 117,2 11,3 3								D2				

Heat flux density of 20 mW/cm² (or 140 mW/cm²) is dissipated in both directions: from the inner surface of the detector and from the outer surface of the detector.

G.Feofilov et al., 4D tracker meeting/ALICE 3/ 15 October 2021

Arrangement of cylindrical and disc detectors for ALICE 3 Beolé S.M. Present and future upgrades of ALICE https://indico.cern.ch/event/1012633/contributions/4512627/

Flows of cold dry air cooling for ALICE central barrel (calculations by A.Marova)

There are two main problems:

- it is necessary to provide laminar flow of the coolant;

- the temperature of the coolant should not be too low (but must provide the required temperature regime)

G.Feofilov et al., 4D tracker meeting/ALICE 3/ 15 October 2021

To begin with, we will restrict ourselves to a cylinder with a radius of 80 cm and a length of 2,6 meters:

Heat flux carried away by the coolant, kW	Coolant	Flow velocity, cm/s	Input tempe rature, °C	Output tempe rature, °C
7	dry air	7,9	0	30
(cylindrical detectors only, heat flux density is 20 mW/cm ²)	nitrogen	9,0	0	30

Comparison with experimental data for ITS-3:

Heat flux carried away by the coolant, kW	Coolant	Flow velocity, cm/s	Input temper ature, °C	Output temper ature, °C
0,02	nitrogen	2,0	10	45

Possible solutions:

- To separate heat flows to provide cooling separately by modules;
- To carry out experiments to select the optimal coolant flow velocity and layout

Introduction

1) Ultra lightweight self-supported mechanics

- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Individual 2800 mm length modules

Option 2: individual 280 mm length module

Thin large area 280x94 mm²
 Si-plate is glued (Araldite)
 to the CF frame.
 In several dots of glue.

2) Thin large area 280x94 mm²Si-plate is being glued (Araldite) to the AIREX[®] foam frame. Thin layer of glue.

3) AIREX[®] foam frame with large area Si-plate 15.04.2024

Two different schemes for gluing of Si and frame :

 Dots of araldite in the corners on the carbon or Airex frame
 Continuous gluing over the ribs

Introduction

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Scheme of tests with laser beam

Different temperature regimes

Temperature of air was measured by several sensors inside the tube

Air-speed measurements: 100 L in about 17 s --> ~ 1m/s (+-10%)

Introduction

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

AIREX frame + Si: deformations at different temperatures

AIREX frame + Si: deformations at different temperatures

Results of thermomechanical tests

- Important: Si plates fixed to the lighweight frames do not break in these temperature variations 20-120 °C!
- Temperature variations from +20 to +120 degrees C
- Deformations value h, see slide 19:

for the large area thin Si-pixel sensors and AIREX (dots of glue in the corners of the AIREX frame)

- noticable deformations, at the level of ~ 250 μ -?? at the
- -- large mismatch between CTEs
- NB! Airex T92.80 alone CTE = (135 ± 10) 10-6 /K
 - -- residual deformation after coolling back to 22 degrees
- Deformations value h, see slide 19:
 - for the large area thin Si-pixel sensors and CF frame
 - -- at the level of ~ 120 $\mu\text{--}??$

Introduction

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Results of vibrational tests at ~ 1m/s air flow

Temperature variations from +20 to +120 degrees C

Amplitude of vibrations – value h, see slide 19:

for the large area thin Si-pixel sensors and AIREX (dots of glue in the corners of the AIREX frame)

– vibration sat the level of $\sim 120~\mu\,$ at the

> Amplitude of vibrations – value *h*, see slide 19:

for the large area thin Si-pixel sensors and CF frame – glue is spread uniformley over ribs

-- vibrations at the level of $\sim 10~\mu$

-- better performance then for Si+AIREX

Introduction

- 1) Ultra lightweight self-supported mechanics
- 2) Experimental setup
- 3) Thermomechanical tests of CTE compatibility for Si and CF
- 4) Vibrational tests
- 5) Conclusions: perspectives for application in ALICE 3 design

Conclusions:

perspectives for application in ALICE 3 design

IDEA 1-- general assembly issues:

- Outer supporting CF+honecomb structure in the clam-shell design housing the Outer Tracker and the FCT disks
- Integration of barrel layers of the Outer Tracker and FCT disks inside this Outer supporting CF+honecomb structure .
- > two types of assembly modules:
- 1. ladders with arrays of thin large-area MAPS
- 2. half-disks of CF frames with thin large-area MAPS
- Possible integration with the beam-pipe of ALICE 3 and IRIS
- IDEA 2-- extra-lightweight mechanics
- IDEA 3-- laminar flows of cold dry air cooling

perspectives for application in ALICE 3 design

Ideas of extra-lightweight CF support structures and cooling scheme are proposed for the future ALICE 3 that are capable to ensure:

- the high level of thermo- and mechanical- stability of large area arrays of thin (~20-40 μ) sensors in MAPS technology
- reliable assembly procedure of the ALICE-3
- Iow speed, low temperature, efficient gas cooling system to provide the functionality without vibrations of the large area arrays of ultra-thin 20-40 μ silicon sensors
- > ALICE Internal Technical Note is being prepared.

BACK-UP SLIDES

Our reports at ITS-PW5

- "Conceptual ideas of ultra-ligthweight self-supported mechanics and cold gas cooling for ITS 3, recent prototyping and thermomechanical tests, perspectives for application in ALICE 3 design."
 Tuesday 16 Apr 2024, https://indico.cern.ch/event/1405488/
- "St Peterburg updates on studies of thermomechanical compatibility of CF and Si plates with different CTEs", Tuesday 10 Oct 2023

https://indico.cern.ch/event/1334873/

- Self-supported ITS 3 modules with bent thin sensors and cold gas cooling , ITS3 Upgrade WP5 (Mechanics and Cooling) meeting 14.02.2023, <u>https://indico.cern.ch/event/1253461/</u>
- Conceptual ideas for the ITS-3 mechanics and cooling: ultra-lightweight carbon fiber support Structures, ITS3 Upgrade WP5 (Mechanics and Cooling) meeting 14.02.2023 https://indico.cern.ch/event/1253461/
- Recent results with the mechanical mockup of the ITS 3 layers based on self-supported CF longerons, ITS3 WP5 Tuesday 28 Jun 2022

https://indico.cern.ch/event/1176198/

• Advances in low speed gas cooling and extra ligthweght self-supported mechanics for ALICE ITS-3 modules, ITS-upgrade WP5 meeting, 10 May 2022, https://indico.cern.ch/event/1158834/

Our reports at ITS-PW5, cntd

• Recent results on nitrogen cooling for three layers of the upgraded ITS3 mockup with space blanket, ITS3 -WP5 (25_January 2022) · Indico (cern.ch),

https://indico.cern.ch/event/1118907/

 3 Ideas for ALICE 3: radiation transparent Cooling/Mechanics/Assembly system for MAPS based OT and FCT, 4D tracker meeting/ALICE 3/ 15 October 2021, <u>https://indico.cern.ch/event/1087515/</u>

 --"Conceptual ideas for the ITS-3 mechanics and cooling: Nitrogen cooling of the ITS-3, part III." ITS3 Upgrade WP5 (Mechanics and Cooling) meeting 06.07.2021

https://indico.cern.ch/event/1056410/

 ---On prototyping in Saint-Petersburg for ITS3, ITS3-WP5 15.06.2021, https://indico.cern.ch/event/1049413/

• --- Upgrade of the extra-lightweight mechanics design for ITS3. ITS-upgrade WP5 meeting 09 March 2021 https://indico.cern.ch/event/1015925/

----Conceptual ideas for the ITS-3 mechanics and cooling: Nitrogen cooling of the ITS-3, part II, ITS-upgrade WP5 meeting 09 March 2021 https://indico.cern.ch/event/1015925/

 Proposals for further optimization of ALICE ITS-3 cooling/mechanics/assembly, ITS-upgrade WP5 meeting, 30 June 2020

