

RCS transverse stability versus α_p

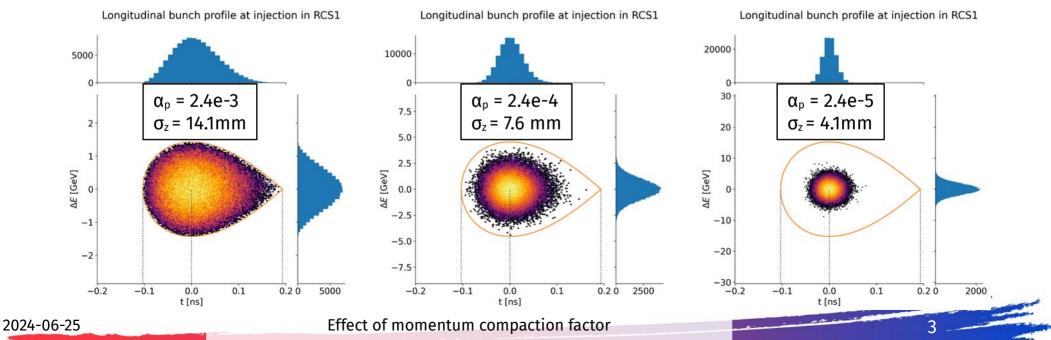
D. Amorim, E. Kvikne, E. Métral Thanks to F. Batsch, J. S. Berg, F. Boattini, L. Bottura, X. Buffat, C. Carli, A. Chancé, H. Damerau, M. Gast, A. Grudiev, I. Karpov, T. Pieloni, D. Schulte, L. Soubirou, K. Skoufaris, L. Thiele

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program (www.chart.ch).

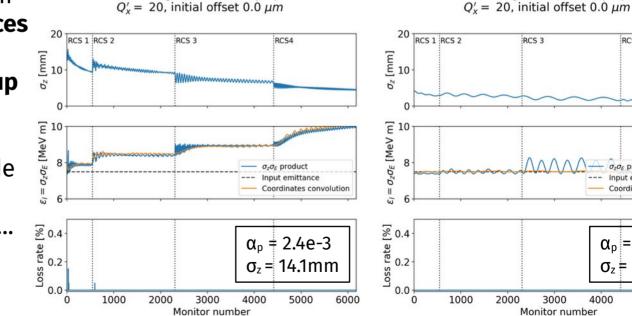
Goal of the study

- Check the effect of momentum compaction factor on transverse beam stability through the RCS chain
- Use the **TESLA cavity transverse HOMs impedance model**
- Scan on damper gain and initial transverse offset of the bunch. Only chromaticity Q'=0 and Q'=+20 will be shown


Machine parameters	Unit	RCS 1	RCS 2	RCS 3	RCS 4
RF frequency	MHz	1300	1300	1300	1300
Harmonic number		25957	25957	46295	151433
RF voltage	GV	20.9	11.22	16.1	90.0
α _p		0.0024	0.0024	0.001	0.001

Reducing α_p has a visible impact on the longitudinal beam profile

- Bunch length and energy deviation scale with $\eta^{1/4}$ and $\eta^{-1/4}$ respectively
- We have $1/\gamma^2 = 2.8e-6$ in RCS 1 at injection, so $\eta = \alpha_p 1/\gamma^2 \sim \alpha_p$
- If we keep the same longitudinal emittance and RF parameters, the bunch length will be reduced for smaller α_p (assuming the bunch is matched to the bucket)



Reducing α_p has a visible impact on the longitudinal beam dynamics

Divide α_p by 10 for all RCS, with Q'=+20, no initial transverse offset, and 20-turn damper

RCS chain, longitudinal beam properties

- Changing the momentum compaction factor reduces the bunch length
- Beam losses and blow-up are also reduced
- Reminder: these simulations don't include beam loading effects, longitudinal impedance...

RCS chain, longitudinal beam properties

RCS4

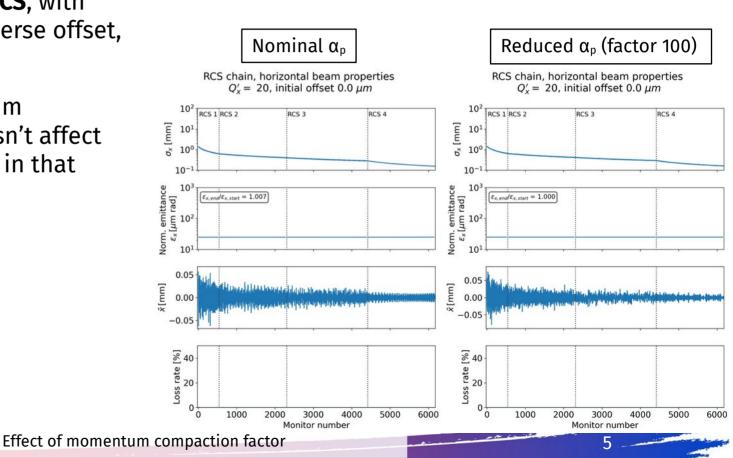
 $\sigma_{*}\sigma_{F}$ product nut emittance

 $\alpha_{\rm p} = 2.4e-5$

 $\sigma_{7} = 4.1 \text{mm}$

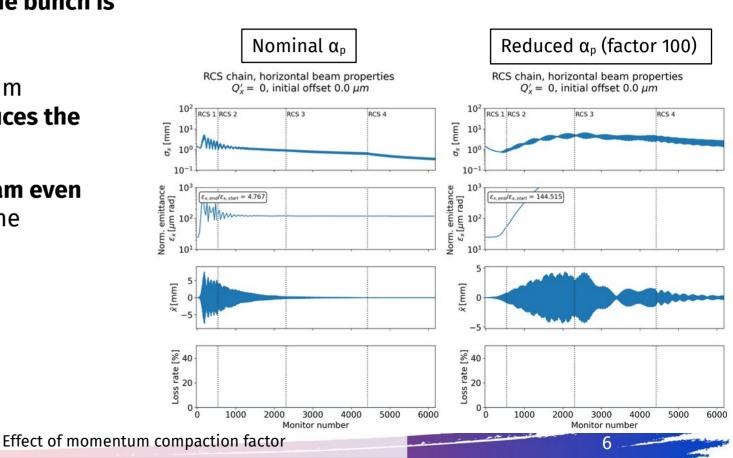
5000

6000


4000

Effect of momentum compaction factor

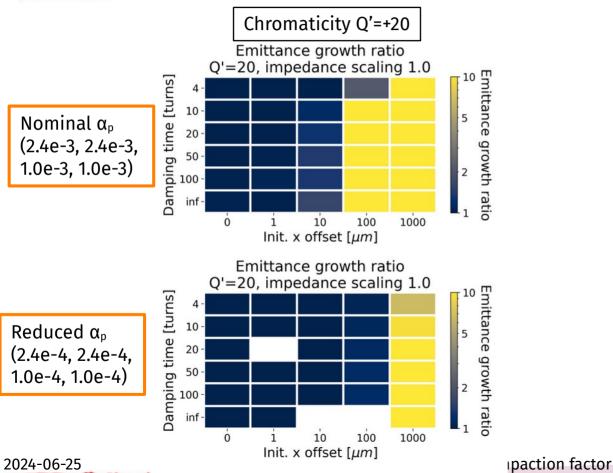
With Q'=20, reducing α_p doesn't impact transverse beam stability

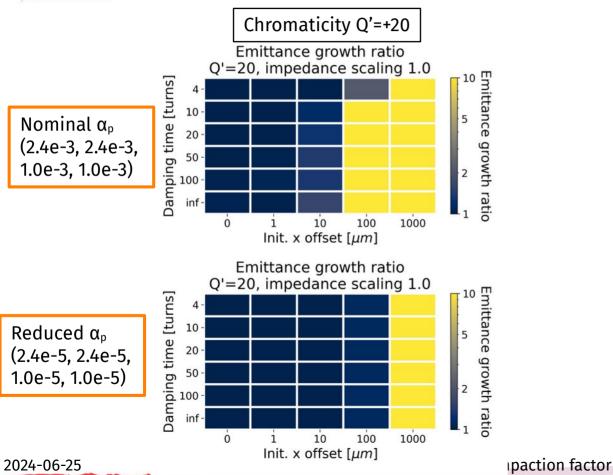

- Divide α_p by 10 for all RCS, with Q'=+20, no initial transverse offset, and 20-turn damper
- Changing the momentum compaction factor doesn't affect the transverse stability in that case

With Q'=0, reducing α_p affects the transverse beam dynamics

- Even with nominal α_p the bunch is already unstable
- Reducing the momentum compaction factor reduces the synchrotron tune Q_s
 - This makes the beam even more unstable in the transverse plane

Overall impact on transverse beam stability


- Check the effect of momentum compaction factor on transverse beam stability through the RCS chain
- Use the **TESLA cavity transverse HOMs impedance model**
- Scan on damper gain and initial transverse offset of the bunch. Only chromaticity Q'=+20 will be shown


Dividing α_p by a factor 10 (with Q'=+20)

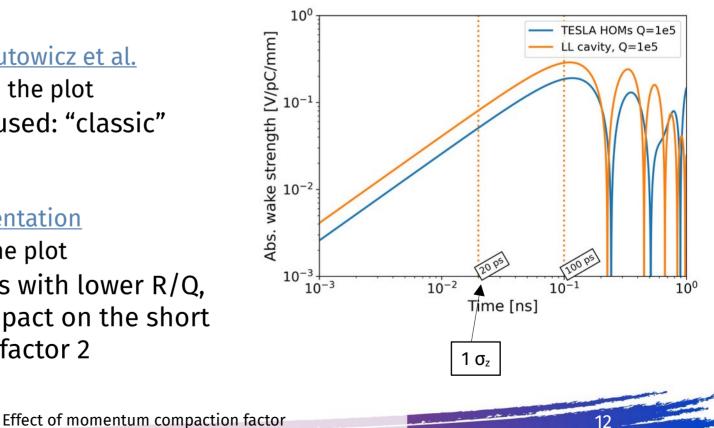
- Reducing the momentum compaction factor doesn't degrade transverse beam stability
- Situation is even improved for the case with 100 µm offset
- Cases with 1 mm initial offset still have large emittance blow-up

Dividing α_p by a factor 100 (with Q'=+20)

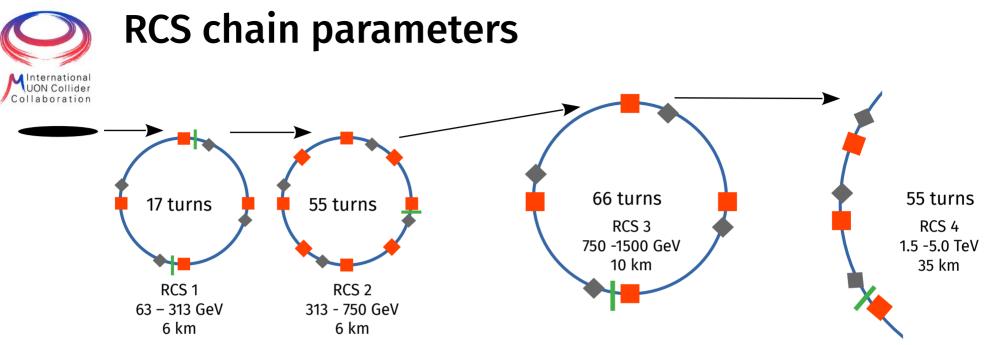
- Same as the previous picture: no strong degradation of transverse coherent stability
- Reduction of $\alpha_{\rm p}$ is even beneficial for the 100 μm case

- **Positive chromaticity** is still **needed** to stabilize the beam
- Reducing the α_p with Q'=+20 doesn't degrade transverse coherent stability
- The situation is quite different with Q'=0, since transverse instability threshold scales with Q_s, and therefore $\alpha_p^{1/2}$

Thank you !



Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.



Classic TESLA cavities have lower HOMs compared to Low Loss cavity

- First cavity model that was used: Low
 Loss SRF cavity
 - HOM list from J. Sekutowicz et al.
 - Appear in orange on the plot
- Second cavity model used: "classic" TESLA cavity
 - HOM list reported in <u>S.-A. Udongwo presentation</u>
 - Appear in blue on the plot
- TESLA cavity has HOMs with lower R/Q, which has a visible impact on the short range wake (almost a factor 2 reduction)

Wake function for the two types of cavity studied

- Main assumptions for the RCS are
 - 32 RF stations in each machine
 - One transverse damper unit, located at RF station 9 (~¼ of the ring)
- Scan several parameters
 - **Chromaticity** Q' from Q'=-20 to Q'=+20
 - Damper gain from 4-turn to 100-turn + no damper
 - Initial transverse offset of the bunch (in each RCS), from 1 µm to 1 mm

Effect of momentum compaction factor

Beam and machine parameters for the RCS

Beam parameters	Unit	Value
Bunch length 1ơ	mm	5.7
Bunch intensity	Particles per bunch	2.7e12
ε _x / ε _y	µm rad	25
ε _x / ε _y # of macropaticles	µm rad	25 400k
-	µm rad	

Machine parameters	Unit	RCS 1	RCS 2	RCS 3	RCS 4
Circumference	m	5990	5990	10700	35000
NC magnet length	m	3655	2539	4366	20376
Bunch intensity	10 ¹²	2.7	2.7	2.7	2.7
Beam momentum	GeV/c	63	313.8	750	1500
Lorentz gamma (injection)		597	2971	7099	14198
Energy increase per turn	GeV	14.7	7.9	11.3	63.6
Rev. frequency	kHz	50	50	28	8.6
RF frequency	MHz	1300	1300	1300	1300
Harmonic number		25957	25957	46295	151433
RF voltage	GV	20.9	11.22	16.1	90.0
α _p		0.0024	0.0024	0.001	0.001
Avg. beta x/y	m	50 / 50	50 / 50	50 / 50	50 / 50
Chromaticity Q'x/Q'y		scan	scan	scan	scan
Detuning from octupoles x/y	m⁻¹	0/0	0/0	0/0	0/0

Parameters from F. Batsch RCS tables

Effect of momentum compaction factor

List of HOMs, Low Loss cavity

HOM list from J. Sekutowicz et al. https://accelconf.web.cern.ch/p05/papers/tppt056.pdf and A. Grudiev presentation https://indico.cern.ch/event/1204745/

Mode name	fres [GHz]	Q _{ext}	$R/Q[k\Omega/m]$	Z [MΩ/m]
D:TE111-7	1.717	4.00E+04	0.695202139	27.8
D:TE111-8	1.738	6.00E+04	0.412081268	24.7
D:TM110-2	1.882	6.00E+03	0.431291291	2.6
D:TM110-4	1.912	9.00E+03	0.574356228	5.2
D:TM110-5	1.927	1.50E+04	1.932654732	29.0
D:TM110-6	1.94	2.00E+04	1.489001143	29.8
D:3rd-1	2.451	1.00E+05	3.077904652	307.8
D:3rd-2	2.457	5.00E+04	2.157045016	107.9
D:5th-7	3.057	3.00E+05	0.039046846	11.7
D:5th-8	3.06	8.00E+05	0.031206852	25.0

List of HOMs, TESLA cavity

HOM list from S.-A. Udongwo presentation https://indico.cern.ch/event/125443 7/contributions/5269860

	Mode name	fres [GHz]	Q _{ext}	R/Q [kΩ/m]	Z [MΩ/m]
Ms.	1	1.659	3.14E+05	0.10384331	32.61
• -	2	1.705	1.35E+04	1.0487417	14.16
Ms, ity	3	1.706	1.34E+04	1.2142325	16.27
	4	1.728	4.13E+02	0.96927264	0.40
	5	1.729	3.81E+02	0.45211054	0.17
	6	1.736	5.16E+02	1.2457026	0.64
	7	1.737	5.74E+02	0.94678177	0.54
	8	1.761	5.83E+03	0.34981612	2.04
longwo	9	1.762	6.21E+03	0.277156	1.72
	10	1.788	8.67E+03	0.16479288	1.43
	11	1.789	8.90E+03	0.18055962	1.61
/event/125443	12	1.798	1.23E+04	0.10527813	1.29
360	13	1.799	1.21E+04	0.10471937	1.27
	14	1.865	3.91E+04	0.78949722	30.87
	15	1.865	4.12E+04	0.82682261	34.07
	16	1.874	3.88E+04	1.0908346	42.32
	17	1.874	4.39E+04	1.0738693	47.14
	18	1.880	4.23E+04	0.22164077	9.38
	19	1.880	5.15E+04	0.23706297	12.21
	20	2.561	6.20E+02	0.13473436	0.08
	21	2.561	5.27E+02	0.12484995	0.07
	22	2.577	3.64E+03	2.0500399	7.46
Effect of momentum compaction factor	23	2.577	4.35E+03	2.0598681	8.96