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ABSTRACT

One of the most intriguing aspects of theoretical physics is uncovering unexpected connections between seemingly

disparate physical systems. These connections often emerge when examining the dynamics of systems at a deeper,

more abstract level, revealing fundamental similarities. This thesis explores such a connection through the lens of the

modular bootstrap in conformal field theories (CFTs) and its implications for the Hellerman bound. In the realm of

quantum gravity, the AdS/CFT correspondence provides a striking example of holography, where quantum gravity in

Anti-de Sitter (AdS) space is dual to a conformal field theory on the boundary. This duality underscores the profound

impact of conformal symmetry, a central theme in our study.

We begin with an introduction to modular forms and the modular group SL(2,Z), establishing the mathematical

foundation necessary for our analysis. We then delve into the principles of conformal symmetry and conformal

transformations, highlighting their group structure and significance, particularly in the two-dimensional case. The

derivation of the conformal Killing equation and the generators of the 2D conformal algebra is presented, leading to

an exploration of the Witt and Virasoro algebras. This framework sets the stage for examining the partition function

from a CFT perspective. Leveraging the modular invariance of the partition function, we derive the Hellerman bound,

a universal constraint on the energy spectrum of CFTs. We demonstrate how this bound emerges from the invariance

of the partition function under modular transformations, providing a rigorous derivation and physical interpretation.

Finally, we address yet another lower bound on the entropy of systems that fall under the Hellerman analysis at

a temperature defined by 𝛽 = 2𝜋. We will also understand why specifically this value for 𝛽 is important and how it

relates to the fixed point of transformation in the modular invariance of the partition function. This thesis not only

elucidates the connections between modular forms, conformal symmetry, and CFTs but also illustrates the power of

the conformal bootstrap approach in deriving and optimizing universal bounds. These findings are significant for

understanding critical phenomena, phase transitions, and the broader implications of holography in theoretical physics.

Keywords: Conformal Field Theory (CFT), Modular Bootstrap, Hellerman Bound, AdS/CFT Correspondence,

Modular Forms, SL(2,Z) Group, Conformal Symmetry, Conformal Transformations, Conformal Killing Equation,

Witt Algebra, Virasoro Algebra, Partition Function, Modular Invariance, Phase Transitions, Critical Phenomena,

Holography, Quantum Gravity, Universal Bounds, Symmetry Transformations.
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1. Preliminaries

1.1 Modular Forms

Modular forms are central to the study of Conformal Field Theories (CFTs) and the conformal bootstrap program.

They provide a robust framework for understanding the symmetries and invariances within these theories, particularly

in higher dimensions. Modular forms facilitate precise computations and offer deep insights into the mathematical

structures underlying CFTs, making them indispensable tools in theoretical physics. In this section, I introduce Modular

Forms with the mathematical structure laying behind them.

𝑆𝐿2 (Z) Group

Let H = {𝑥 + 𝑖𝑦 | 𝑦 > 0}, the upper half-plane consisting of complex numbers with positive imaginary parts.

Define 𝑆𝐿2 (Z) =


©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ 𝑀2 (Z) | 𝑎𝑑 − 𝑏𝑐 = 1


This is the special linear group of 2x2 matrices with integer entries and determinant 1.

For 𝜏 ∈ H and 𝛾 =
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ 𝑆𝐿2 (Z), the group is defined to act on H by linear fractional transformations:

𝛾𝜏
def
=

𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

This transformation maps H to itself, preserving the structure of the upper half-plane. To show that the image under

the transformation remains in H, consider the following:

Im
(
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

)
= Im

(
(𝑎𝜏 + 𝑏) (𝑐𝜏∗ + 𝑑)

|𝑐𝜏 + 𝑑 |2

)
= Im

(
𝑎𝑐 |𝜏 |2 + 𝑎𝑑𝜏 + 𝑏𝑐𝜏∗ + 𝑏𝑑

|𝑐𝜏 + 𝑑 |2

)
= Im

(
𝑎𝑑𝜏 + 𝑏𝑐𝜏∗

|𝑐𝜏 + 𝑑 |2

)
Since 𝑎𝑐 |𝜏 |2 + 𝑏𝑑 ∈ R, it does not affect the imaginary part. We have:

= Im
(
𝑎𝑑𝜏 − 𝑏𝑐𝜏∗

|𝑐𝜏 + 𝑑 |2

)
(since Im(𝜏) = −Im(𝜏∗))

=
(𝑎𝑑 − 𝑏𝑐) Im(𝜏)

|𝑐𝜏 + 𝑑 |2
=

Im(𝜏)
|𝑐𝜏 + 𝑑 |2

(Given 𝑎𝑑 − 𝑏𝑐 = 1)

Since Im(𝜏) > 0 and |𝑐𝜏 + 𝑑 |2 > 0, the imaginary part remains positive, proving the transformation preserves H.

4



1.1. Modular Forms 5

Defining Modular Forms

Definition: Let 𝑘 ∈ Z. A modular form of weight 𝑘 for 𝑆𝐿2 (Z) is a function 𝑓 : H→ C satisfying:

1. 𝑓 is holomorphic.

2. [Modularity Condition]:

𝑓

(
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

)
= (𝑐𝜏 + 𝑑)𝑘 𝑓 (𝜏) ∀

©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ 𝑆𝐿2 (Z)

3. As Im(𝜏) → ∞, 𝑓 (𝜏) is bounded.

Examples:

Consider the following examples to illustrate the modularity condition:

For 𝛾 =
©«
1 1

0 1

ª®®¬:
𝑓 (𝜏 + 1) = 𝑓 (𝜏) ∀𝜏 ∈ H

For 𝛾 =
©«
0 −1

1 0

ª®®¬:
𝑓

(
−1
𝜏

)
= (−𝜏)𝑘 𝑓 (𝜏) ∀𝜏 ∈ H

For 𝛾 =
©«
−1 0

0 −1

ª®®¬:
𝑓 (𝜏) = (−1)𝑘 𝑓 (𝜏) ∀𝜏 ∈ H

Thus, if 𝑘 is odd:

𝑓 (𝜏) = 0 ∀𝜏 ∈ H

(This shows that the only modular form for 𝑆𝐿2 (Z) of odd weight is the zero function.)

Claim: 𝑆𝐿2 (Z) forms a non-abelian group under matrix multiplication.

Proof:

Let 𝛼 =
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ 𝑆𝐿2 (Z) and 𝛽 =
©«
𝑎′ 𝑏′

𝑐′ 𝑑′

ª®®¬ ∈ 𝑆𝐿2 (Z).
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𝛼𝛽 =
©«
𝑎𝑎′ + 𝑏𝑐′ 𝑎𝑏′ + 𝑏𝑑′

𝑐𝑎′ + 𝑑𝑐′ 𝑐𝑏′ + 𝑑𝑑′

ª®®¬ ∈ 𝑀2 (Z)

The determinant of the product is:

det(𝛼𝛽) = det(𝛼) det(𝛽) = 1

So, 𝛼𝛽 ∈ 𝑆𝐿2 (Z). Additionally:

𝐼 =
©«
1 0

0 1

ª®®¬ ∈ 𝑆𝐿2 (Z) (Identity element)

∀𝛼 ∈ 𝑆𝐿2 (Z), ∃𝛼−1 such that 𝛼𝛼−1 = 𝐼 since det(𝛼) = 1

However, matrix multiplication is not commutative. Therefore:

𝛼𝛽 ≠ 𝛽𝛼

Thus, 𝑆𝐿2 (Z) forms a non-abelian group.

Conclusion: If the modularity condition holds for a function 𝑓 : H → C and matrices 𝛼 =
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬, 𝛽 =
©«
𝑎′ 𝑏′

𝑐′ 𝑑′

ª®®¬ ∈

𝑆𝐿2 (Z), then it also holds for the composition 𝛼𝛽.

Generators of 𝑆𝐿2 (Z)

Claim: The generators of 𝑆𝐿2 (Z) are 𝑆 =
©«
0 −1

1 0

ª®®¬, and 𝑇 =
©«
1 1

1 0

ª®®¬
Proof:

Let 𝐺 = ⟨𝑆, 𝑇⟩ be the subgroup of 𝑆𝐿2 (Z) generated by 𝑆 and 𝑇 , we need to show that 𝐺 = 𝑆𝐿2 (Z).

First note that:

𝑆
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ =
©«
−𝑐 −𝑑

𝑎 𝑏

ª®®¬ , 𝑇𝑛
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ =
©«
𝑎 + 𝑛𝑐 𝑏 + 𝑛𝑑

𝑐 𝑑

ª®®¬
Now, let 𝛾 =

©«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ 𝑆𝐿2 (Z). Suppose 𝑐 ≠ 0. If |𝑎 | ≥ |𝑐 |, then 𝑎 = 𝑞𝑐 + 𝑟 , 𝑟 = 𝑎 − 𝑞𝑐.

𝑇−𝑞𝛾 =
©«
𝑎 − 𝑞𝑐 𝑏 − 𝑞𝑑

𝑐 𝑑

ª®®¬ =
©«
𝑟 𝑏′

𝑐 𝑑

ª®®¬ , 𝑏′ = 𝑏 − 𝑞, |𝑟 | < |𝑐 |.
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Applying 𝑆:

𝑆𝑇−𝑞𝛾 =
©«
−𝑐 −𝑑

𝑟 𝑏′

ª®®¬
Again, |𝑐 | ≥ |𝑟 |. So, we can apply the same algorithm again and again until we get a matrix 𝜂 ∈ 𝑆𝐿2 (Z) with lower-left

entry of zero. Such a matrix should have the form
©«
±1 𝑚

0 ±1

ª®®¬.
𝑆𝑇 𝛼 . . . 𝑆𝑇𝛽𝑆𝑇−𝑞𝛾 = 𝑔𝛾, where 𝑔 = 𝑆𝑇 𝛼 . . . 𝑆𝑇𝛽𝑆𝑇−𝑞 . But 𝑔𝛾 =

©«
±1 𝑚

0 ±1

ª®®¬ = ±𝑇𝑚.

Thus, 𝛾 = ±𝑔−1𝑇𝑚 for some 𝑚 ∈ Z. Also, note that 𝑆2 = −𝐼. We showed that a general matrix 𝛼 ∈ 𝑆𝐿2 (Z) was also

found ∈ 𝐺 = ⟨𝑆, 𝑇⟩. Hence, 𝐺 = 𝑆𝐿2 (Z), and 𝑆 and 𝑇 generate 𝑆𝐿2 (Z). Hence, to check 𝑓 : H → C is a modular

form of weight 𝑘 , it suffices to check conditions (1) & (3), and check condition (2) only for the 𝑆 and 𝑇 matrices. Thus,

we can recast the second condition to the following statements:

𝑓 (𝑆𝜏) = 𝑓

(
−1
𝜏

)
= 𝜏𝑘 𝑓 (𝜏), 𝑓 (𝑇𝜏) = 𝑓 𝜏 + 1) = 𝑓 (𝜏)

1.2 Conformal Group

Under coordinate transformations, 𝑥𝜇 → 𝑥′𝜇, the metric transforms as:

𝑔′𝛼𝛽 (𝑥′) =
𝜕𝑥𝜇

𝜕𝑥′𝛼
𝜕𝑥𝜈

𝜕𝑥′𝛽
𝑔𝜇𝜈 (𝑥)

Let us investigate a special type of coordinate transformations called Conformal transformations, which keep the

metric invariant up to a local scale.

𝑔′𝑎𝑏 (𝑥
′) = Ω2 (𝑥)𝑔𝑎𝑏 (𝑥)

I will first show that these transformations form a group called the Conformal Group, and derive what is called the

Conformal Killing Equation by considering the infinitesimal version of conformal transformations.

Group Proof

Claim: Conformal transformations form a group G.

Proof:

Closure:

Let 𝑥′𝜇 = 𝑓 (𝑥𝜇), 𝑥′𝜈 = 𝑔(𝑥𝜈), for 𝑓 , 𝑔 ∈ G

Under 𝑓 : 𝑔′𝜇𝜈 (𝑥′) = Ω2
1 (𝑥)𝑔

𝜇𝜈 (𝑥), and under 𝑔 : 𝑔′𝜇𝜈 (𝑥′) = Ω2
2 (𝑥)𝑔

𝜇𝜈 (𝑥)
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Consider 𝑓 ◦ 𝑔 : 𝑔′𝜇𝜈 (𝑥′) = Ω2
1 (𝑥)Ω

2
2 (𝑥)𝑔

𝜇𝜈 (𝑥) = (Ω1 (𝑥)Ω2 (𝑥))2𝑔𝜇𝜈 (𝑥). Thus, 𝜂 = 𝑓 ◦ 𝑔 ∈ G by definition.

Associativity:

G is trivially associative from the associativity of function composition. Namely, 𝑓 ◦ (𝑔 ◦ ℎ) (𝑥) = ( 𝑓 ◦ 𝑔) ◦ ℎ(𝑥)

The existence of the identity element:

A transformation I : 𝑔′𝜇𝜈 (𝑥′) = 𝑔𝜇𝜈 (𝑥) is conformal with Ω2 (𝑥) = 1. Hence, the identity I ∈ G.

The existence of inverses for each element:

For 𝑓 ∈ G : 𝑔′𝜇𝜈 (𝑥′) = Ω2
1 (𝑥)𝑔

𝜇𝜈 (𝑥), a corresponding transformation 𝑓 −1 ∈ G : 𝑔′𝜇𝜈 (𝑥′) = Ω−2
1 (𝑥)𝑔𝜇𝜈 (𝑥) exists by

definition. Moreover, 𝑓 ◦ 𝑓 −1 = I. Hence, ℎ = 𝑓 −1 ∈ G∀ 𝑓 ∈ 𝐺.

This completes the proof that conformal transformations indeed form a group.

Conformal Killing Equation

Now, consider the infinitesimal version of a conformal transformation

𝑥′𝜇 = 𝑥𝜇 + 𝜉𝜇 (𝑥), 𝜉𝜇 (𝑥) → 0. 𝑠.𝑡. 𝑔′𝜇𝜈 (𝑥′) = Ω2 (𝑥)𝑔𝜇𝜈 (𝑥)

𝜕𝑥𝛼

𝜕𝑥′𝛽
= 𝛿𝛼𝛽 − 𝜕𝜉𝛼

𝜕𝑥′𝛽
= 𝛿𝛼𝛽 − 𝜕𝑥𝜇

𝜕𝑥′𝛽
𝜕𝜉𝛼

𝜕𝑥𝜇
= 𝛿𝛼𝛽 − (𝛿𝜇

𝛽
− 𝜕𝜉𝜇

𝜕𝑥′𝛽
) 𝜕𝜉

𝛼

𝜕𝑥𝜇
= 𝛿𝛼𝛽 − 𝜕𝛽𝜉

𝛼 +𝑂 (𝜉2)

Plugging this in the metric transformation equation yields:

𝑔′𝜇𝜈 = (𝛿𝛼𝜇 − 𝜕𝜇𝜉
𝛼) (𝛿𝛽𝜈 − 𝜕𝜈𝜉

𝛽)𝑔𝛼𝛽 = 𝑔𝜇𝜈 − 𝜕𝜈𝜉𝜇 − 𝜕𝜇𝜉𝜈 +𝑂 (𝜉2)

Now, we demand that this is a conformal transformation by imposing 𝑔′𝜇𝜈 (𝑥′) = Ω2 (𝑥)𝑔𝜇𝜈 (𝑥).

𝜕𝜈𝜉𝜇 + 𝜕𝜇𝜉𝜈 = (1 −Ω2)𝑔𝜇𝜈

𝑔𝜇𝜈 (𝜕𝜈𝜉𝜇 + 𝜕𝜇𝜉𝜈) = (1 −Ω2)𝑔𝜇𝜈𝑔𝜇𝜈

𝑔𝜇𝜈𝑔
𝜇𝜈 = 𝐷

𝜕𝜈𝜉𝜈 + 𝜕𝜇𝜉𝜇 = 2𝜕𝑚𝜉𝑚 = 𝐷 (1 −Ω2), 1 −Ω2 =
2
𝐷
𝜕𝑚𝜉𝑚 =

2
𝐷
(𝜕 · 𝜉)

Hence, we obtain the Conformal Killing Equation 𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇 = 𝑔𝜇𝜈 (𝜕 · 𝜉).
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Case of D = 2 with Flat Euclidean Metric

𝑔𝑢𝑣 = 𝛿𝑢𝑣

𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇 = 𝛿𝜇𝜈 (𝜕 · 𝜉)

For 𝜇 = 𝜈 :

2𝜕1𝜉1 = 𝜕1𝜉1 + 𝜕2𝜉2, 𝜕1𝜉1 = 𝜕2𝜉2

For 𝜇 ≠ 𝜈 :

𝜕1𝜉2 + 𝜕2𝜉1 = 0, 𝜕1𝜉2 = −𝜕2𝜉1

We observe that these are the Cauchy-Riemann conditions for complex analytic functions. Hence, the conformal

transformations for 2D flat euclidean metric are the set of analytic functions 𝑓 (𝑧) = 𝜉1 + 𝑖𝜉2. This is manifested upon

complexifying the coordinates 𝑧 = 𝑥 + 𝑖𝑦, 𝑧′ = 𝑧 + 𝑓 (𝑧).

1.3 Conformal Algebra in 2D Flat Space

We are now ready to investigate the conformal algebra in 2D flat space. In the previous section, we showed that the

conformal killing equation in 2D flat euclidean space implies that the set conformal transformations include all the

analytic functions. This result could be generalized trivially to 2D Minkowski space. In this section, I will derive the

2D conformal algebra known as Witt Algebra and its central extension known as Virasoro Algebra. I will also show

that the witt algebra admits a sub-algebra, which corresponds to the global conformal transformations.

We showed that in 2 dimensions (𝑥0, 𝑥1), the infinitesimal conformal transformations are:

𝑥′0 = 𝑥0 + 𝜉0, 𝑥′1 = 𝑥1 + 𝜉1, 𝑠.𝑡. 𝑓 = 𝜉0 + 𝑖𝜉1 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

It is then convenient to work in the complex coordinates:

𝑧 = 𝑥0 + 𝑖𝑥1, 𝑧′ = 𝑧 + 𝑓 (𝑧)

Recall from complex analysis that the only bounded and entire function is the constant function. So, in general an

analytic function shall admit singularities if it’s bounded. Hence, in general, we can laurent expand the function

𝑓 (𝑧) = −∑
𝑛∈Z 𝑎𝑛𝑧

𝑛+1, where the negative sign and the 𝑛 + 1 in the power are technical conventions. Now, consider

the m-th term in this expansion, for which 𝑧 = 𝑧 − 𝑎𝑚𝑧
𝑚+1, we need to get the generator of this term:
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𝑒𝑎𝑚ℓ𝑚 𝑧 = 𝑧 − 𝑎𝑚𝑧
𝑚+1, (1 + 𝑎𝑚ℓ𝑚 +𝑂 (ℓ2

𝑚))𝑧 = 𝑧 − 𝑎𝑚𝑧
𝑚+1

𝑧 + 𝑎𝑚ℓ𝑚𝑧 = 𝑧 − 𝑎𝑚𝑧
𝑚+1, ℓ𝑚𝑧 = −𝑧𝑚+1

ℓ𝑚 = −𝑧𝑚+1𝜕𝑧

Now, consider the lie algebra of this set of generators

[ℓ𝑛, ℓ𝑚] 𝑓 (𝑧) = 𝑧𝑛+1𝜕𝑧 (𝑧𝑚+1 𝜕 𝑓

𝜕𝑧
)−𝑧𝑚+1𝜕𝑧 (𝑧𝑛+1 𝜕 𝑓

𝜕𝑧
) = (𝑚+1)𝑧𝑛+𝑚+1 𝜕 𝑓

𝜕𝑧
−(𝑛+1)𝑧𝑛+𝑚+1 𝜕 𝑓

𝜕𝑧
= −(𝑛−𝑚)𝑧𝑚+𝑛+1𝜕𝑧 𝑓 = (𝑛−𝑚)ℓ𝑛+𝑚 𝑓

Hence, we obtain what is called the Witt algebra:

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚)ℓ𝑛+𝑚

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚)ℓ𝑛+𝑚

[ℓ𝑛, ℓ𝑚] = 0

It is noticeable that this algebra is infinite-dimensional, and is not defined everywhere on the Riemann Sphere which

is the correct compactification of R. However, this algebra admits a sub-algebra generated by: ℓ−1, ℓ0, ℓ1. To see this,

consider the following:

[ℓ0, ℓ−1] = ℓ−1

[ℓ1, ℓ−1] = 2ℓ0

[ℓ1, ℓ0] = ℓ1

This sub-algebra however is globally defined and corresponds to the global conformal gorup. To argue this, we observe

that on R2 ∼ C the generators are not everywhere defined. Of course, we should probably be working on the Riemann

sphere 𝑆2 ∼ C ∪ R, as it is the conformal compactification of R. Even here, however, some generators are not well

defined. The generators ℓ𝑛 are non-singular at 𝑧 = 0 only for 𝑛 ≥ −1. By performing the change of variables 𝑧 = 1
𝑤

,

we can also see that ℓ𝑛 are non-singular as 𝑤 → 0 for 𝑛 ≤ 1. Therefore globally defined conformal transformations on

the Riemann sphere are generated by ℓ−1, ℓ0, ℓ1.

Now, we notice that ℓ−1 and ℓ−1 generate translations on the complex plane, while ℓ1 and ℓ1 generate special conformal

transformations. Let us investigate the action of ℓ0. ℓ0 = −𝑧𝜕𝑧 can be written in terms of the complex polar coordinates
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(𝑧 = 𝑟𝑒𝑖 𝜃 ) as follows:

ℓ0 = −1
2
𝑟𝜕𝑟 +

𝑖

2
𝜕𝜃 , ℓ0 = −1

2
𝑟𝜕𝑟 −

𝑖

2
𝜕𝜃

Then the useful linear combinations are easily observed to be

ℓ0 + ℓ0 = −𝑟𝜕𝑟 , 𝑖(ℓ0 − ℓ0) = −𝜕𝜃

The first generator corresponds to dilitations and the second one corresponds to the generator of rotations. Let us

confirm this:

𝑒𝑎 (ℓ0+ℓ0 )𝑟𝑒𝑖 𝜃 = 𝑒−𝑎𝑟𝜕𝑟 𝑟𝑒𝑖 𝜃 = (1 − 𝑎𝑟𝜕𝑟 +𝑂 (𝜕2
𝑟 ))𝑟𝑒𝑖 𝜃 = (1 − 𝑎)𝑟𝑒𝑖 𝜃

𝑒𝜙𝑖 (ℓ0−ℓ0 )𝑟𝑒𝑖 𝜃 = 𝑒−𝜙𝜕𝜃 𝑟𝑒𝑖 𝜃 = (1 − 𝜙𝜕𝜃 +𝑂 (𝜕2
𝜃 ))𝑟𝑒𝑖 𝜃 = (1 − 𝑖𝜙)𝑟𝑒𝑖 𝜃

These are the infinitesimal versions, to get the finite transformations, we let 𝐴 = 𝑁𝑎, and Φ = 𝑁𝜙, and take the

limit as 𝑁 → ∞ and compose the transformations:

lim
𝑁→∞

(1 − 𝐴

𝑁
)𝑁𝑟𝑒𝑖 𝜃 = 𝑒𝐴𝑟𝑒𝑖 𝜃

lim
𝑁→∞

(1 − 𝑖
Φ

𝑁
)𝑁𝑟𝑒𝑖 𝜃 = 𝑒𝑖Φ𝑟𝑒𝑖 𝜃 = 𝑟𝑒𝑖 (𝜃+Φ)

Indeed, these operators generate dilitations and rotations respectively.

These operators generate infinitesimal transformations of the form 𝑧 → 𝑎𝑧+𝑏
𝑐𝑧+𝑑 , 𝑎, 𝑏, 𝑐, 𝑑 ∈ C. This is exactly

the definition of the conformal group 𝑃𝑆𝐿 (2,C). It’s similar to the Modular Group 𝑆𝐿 (2,Z) except that we now

allow complex entries. This also the general definition of the mobius transformations which are the nicest invertible

transformations on the whole complex plane (including the point at infinity) that map the plane to itself, and this is

why they are globally conformal.

The Witt algebra admits what is called a central extension to a different kind of algebra known as Virasoro Algebra

which is depicted below. The detailed derivation is beyound the scope of this thesis.

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛 +
𝑐

12
(𝑚3 − 𝑚)𝛿𝑚+𝑛,0

with a corresponding formula for 𝐿, and 𝑐. Notice that the central extension does not affect our finite subalgebra of

conformal transformations.



2. Introduction

Conformal Field Theories (CFTs) have emerged as a cornerstone in theoretical physics, particularly in the realms

of statistical mechanics and string theory. These theories are instrumental in understanding critical phenomena, phase

transitions, and the behavior of systems at large scales. At the heart of CFTs lies the concept of conformal symmetry,

which extends the usual Poincaré symmetry of spacetime by including transformations that preserve angles but not

necessarily distances. This additional symmetry imposes powerful constraints on the physical theories, allowing for

exact results that are often out of reach in other contexts.

2.1 Conformal Field Theories and Statistical Mechanics

The relationship between CFTs and statistical mechanics is profound and multifaceted. In statistical mechanics,

systems at critical points exhibit scale invariance, and their behavior can be described by CFTs. These critical points,

where phase transitions occur, are characterized by the absence of a characteristic length scale, leading to universal

behavior that CFTs can capture with remarkable precision. For example, in two dimensions, the Ising model at its

critical temperature is described by a CFT with central charge 𝑐 = 1
2 . This correspondence allows for the exact

calculation of critical exponents and correlation functions, providing deep insights into the nature of phase transitions.

2.2 Modular Forms in Conformal Field Theories

Modular forms play a pivotal role in the study of CFTs, especially in the context of the modular bootstrap program.

These mathematical objects are functions on the upper half-plane that transform in specific ways under the action of

the modular group 𝑆𝐿2 (Z). The modular group, consisting of 2x2 matrices with integer entries and determinant 1,

encapsulates symmetries that are crucial for understanding the behavior of CFTs under transformations such as the

modular transformation 𝜏 → 𝑎𝜏+𝑏
𝑐𝜏+𝑑 , where 𝜏 is a complex number in the upper half-plane.

The properties of modular forms provide a robust framework for understanding the symmetries and invariances

within CFTs. They facilitate precise computations and offer deep insights into the mathematical structures underlying

these theories. In higher-dimensional CFTs, modular forms help in understanding the partition functions and correlation

functions, which are central to the study of these theories.

2.3 Motivating the Modular Bootstrap Program

The modular bootstrap program is a powerful approach that leverages the symmetries of CFTs to constrain and solve

these theories. By analyzing the constraints imposed by modular invariance, one can derive consistency conditions

that any CFT must satisfy. This program has its roots in the pioneering work on the conformal bootstrap in the 1970s,

which aimed to determine the spectrum of primary operators and their correlation functions using the symmetries of

12
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the conformal group.

In two dimensions, the modular bootstrap program has led to remarkable successes, such as the classification of

minimal models and the exact solution of numerous CFTs. The central idea is to use the modular invariance of the

partition function on the torus to derive powerful constraints on the theory. By demanding that the partition function

transforms appropriately under the modular group, one can derive constraints that severely limit the possible spectra

and operator dimensions in the theory.

Moreover, the modular bootstrap has profound implications for the AdS/CFT correspondence, a duality that relates

CFTs to theories of gravity in higher-dimensional spacetimes. This correspondence has opened new avenues for using

CFT techniques to gain insights into quantum gravity and string theory.

In conclusion, the study of conformal field theories through the lens of modular forms and the modular bootstrap

program not only enhances our understanding of statistical mechanics and critical phenomena but also provides a deep

and rich mathematical structure that underpins many of the most exciting developments in theoretical physics today.



3. CFTs on a torus and the modular bootstrap

3.1 Complex tori

In this section, we will consider conformal field theories on a torus. From a statistical physics point of view, this

consideration is natural because more often than not we work with periodic boundary conditions which is equivalent

to working on a torus, as shown in figure 3.1. Moreover, in condensed matter physics, the torus structure appears when

we consider a one-dimensional quantum system at finite temperature. At an abstract level, studying CFTs on a torus

yields deep physical insights.

Figure 3.1: The square grid with periodic boundary condition is a torus

3.1.1 Complex tori and moduli space

From the point of view of topology, a torus T is the Cartesian product of two circlesS1𝑥S1. This means that as a smooth

surface, the torus is equivalent to the R2 plane quotiented by the group Z2 such that the points (𝑥, 𝑦) → (𝑥 + 1, 𝑦) and

(𝑥, 𝑦) → (𝑥, 𝑦 + 1) are identified. Hence, a conveinent way to describe a complex torus is as a quotient of the plane by

a lattice Λ. So, given two linearly independent complex lattice vectors 𝜔1 and 𝜔2, the lattice Λ generated by them is

the subset

Λ = 𝜔1Z ⊕ 𝜔2Z

as shown in figure 3.2. 𝜔1 and 𝜔2 are called the periods of the lattice. Moreover, if we have two scaled, translated,

or rotated tori from each other, we consider them conformally equivalent because we are working with a CFT. In

the preliminaries section, we showed that the conformal group includes rotations, dilitations, translations, and special

conformal transformations. Here, we study a CFT on a torus, so, any conformally related tori will give the same

physics. Our goal then is to study the implications of conformal symmetry on the invariants of our physical objects. In

particular, the lattice 𝜔1Z ⊕ 𝜔2Z is equivalent to

14
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Figure 3.2: The lattice Λ generated by 𝜔1 and 𝜔2

Λ = Z ⊕ 𝜏Z, 𝜏 =
𝜔1
𝜔2

𝜏 is called the complex structure of the torus. Note also that we can assume without loss of generality that 𝐼𝑚(𝜏) > 0;

for if it is negative, we can just transform 𝜔1 → −𝜔1. Furthermore, the bases (𝜔1, 𝜔2) and (𝜔′
1, 𝜔

′
2) generate the

same lattice if 𝜔′
1 = 𝜔1 + 𝑛 and 𝜔′

2 = 𝜔2 + 𝑚, where 𝑛, 𝑚 ∈ Z. Because rotations and translations of the torus

generate conformally equivalent tori, the bases (𝜔1, 𝜔2) and (𝜔′
1, 𝜔

′
2) are equivalent if and only if they are related by

a unimodular matrix 𝐴, 𝑖.𝑒. an element of the modular group SL(2,Z) discussed in the preliminaries section. Namely,

©«
𝜔′

1

𝜔′
2

ª®®¬ =
©«
𝑎 𝑏

𝑐 𝑑

ª®®¬
©«
𝜔1

𝜔2

ª®®¬ , 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, 𝑎𝑑 − 𝑏𝑐 = 1

In terms of the complex structure 𝜏, this means

𝜏′ =
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

which we immediately recognize as the action of the SL(2,Z) on the upper-half planeH as discussed in the preliminaries

section. Hence, a torus with a complex structure 𝜏 in the upper-half plane is conformally equivalent to a torus with

a complex structure 𝜏′ in the upper-half plane and related to 𝜏 by an element in SL(2,Z). We also discussed in the

preliminaries section that SL(2,Z) is generated by the 𝑆, and 𝑇 matrices whose action in this case is:

𝑇 : 𝜏 → 𝜏 + 1, 𝑆 : 𝜏 → −1
𝜏
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3.2 Torus partition function and modular invariance

From our discussion, the complex torus T𝜏 is a parallelogram, spanned by 1 and 𝜏 = 𝜏1 + 𝑖𝜏2 =
𝜔1
𝜔2

with the opposite

sides identified. This procedure rolls the parallelogram into a cylinder of height 𝜏2 as shown in the figure below.

Figure 3.3: The cylinder obtained from the identification

We can then obtain the partition function of a one-dimensional quantum system at a finite temperature in a very

ingenious way as follows. First, consider the case when 𝜏1 = 0, so, 𝜏 = 𝑖𝜏2, the partition function would coincide

exactly with that system if we identify 𝛽 = 𝜏2, namely

𝑍 (𝑖𝜏2) = 𝑇𝑟 (𝑒−𝜏2𝐻 ) = 𝑇𝑟 (𝑒−𝛽𝐻 )

where 𝐻 is the Hamiltonian of the 1d quantum system on a circle of unit length. However, the real part 𝜏1 of 𝜏 requires

an additional translation of space on top of the Euclidean time evolution before sewing up (i.e. before taking the trace),

therefore

𝑍 (𝜏) = 𝑇𝑟 (𝑒−𝜏2𝐻𝑒−𝑖𝜏1𝑃)

Now, consider the exponential map 𝑤 = 𝑒−𝑖2𝜋𝑧 where 𝑧 = 𝑥 + 𝑖𝑡, so, 𝑤 = 𝑒−𝑖2𝜋𝑥𝑒2𝜋𝑡 . We showed in the preliminaries

section that the finite action of the operator 𝐿0 + 𝐿0 − 𝑐+𝑐
24 on any complex number is a dilitation, and that the action

of the operator 𝑖(𝐿0 − 𝐿0 − 𝑐−𝑐
24 ) is a rotation in the complex plane. Hence, under the exponential map, the operator

𝐿0 + 𝐿0 − 𝑐+𝑐
24 generate time translation, and that the operator 𝑖(𝐿0 − 𝐿0 − 𝑐−𝑐

24 ) generate spatial translation. So, it

is therefore straightforward to identify 𝐿0 + 𝐿0 − 𝑐+𝑐
24 as the Hamiltonian operator H, and 𝑖(𝐿0 − 𝐿0 − 𝑐−𝑐

24 ) as the

momentum operator P. So, in a compact form, the partition function can be written as

𝑍 (𝜏, 𝜏) = 𝑇𝑟 (𝑞𝐿0− 𝑐
24 𝑞−𝐿0− 𝑐

24 ), 𝑞 = 𝑒2𝜋𝑖𝜏
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Under the identification of 𝜏 =
𝑖𝛽

2𝜋 , 𝑍 (𝜏, 𝜏) = 𝑇𝑟 (𝑒−𝛽 (𝐿0+𝐿0− 𝑐+𝑐
24 ) ) = 𝑇𝑟 (𝑒−𝛽𝐻 ). Moreover, the partition function

shall be invariant under a modular transformation on the complex structure 𝜏. In particular, the S transformation

𝑍 (𝜏) = 𝑍 ( −1
𝜏
). Hence, 𝑍 (𝛽) = 𝑍 ( 4𝜋2

𝛽
) and this is the modular invariance of the partition function that we will rely on

moving forward.

3.2.1 Further discussion on the partition function and the exponential map

We stated that the partition function also involves the momentum operator which might not seem obvious at first glance.

However, when one looks at fig 3.2 under the identification of 𝜔1 with space and 𝜔2 with time, we see that a closed loop

in time also involves spatial translations. We are therefore motivated to define the partition function this way. This is

essentially the same thing for CFTs as in statistical mechanics: a sum over configurations by some weight which is the

Boltzmann factor 𝑒−𝛽𝐻 in statistical mechanics. It also corresponds to the generating functional in Euclidean QFT due

to the fact that the thermodynamic expression can be found by compactifying the time on a circle of radius 𝑅 = 𝛽 = 1
𝑇

.

Moreover, the essence of what we did lies in the fact that because of the conformal symmetry and the identification

of conformally equivalent tori, we have a whole class of modularly related complex structures which yield the same

physics. So, the physics should be insensitive to choice of the modular parameter 𝜏, and this symmetry is immediately

inherited in the partition function which encodes the physical information.

The exponential map 𝑤 = 𝑒−𝑖2𝜋𝑧 where 𝑧 = 𝑥 + 𝑖𝑡 maps the complex plane into concentric circles where when we

consider points of constant time and evolve the space we find ourselves moving on a circle in the new 𝑤 plane.

Moreover, the time evolution amounts to moving in the radial direction in this plane. It is also important to note that

the exponential map takes the point at the infinite past −∞ to the zero point in the 𝑤 plane which is defined, and this

gives us an advantage of dealing rigorously with this point. It also moves the infinite future to the point at infinity in

the 𝑤 plane which is also well-defined because the whole complex plane includes the point at infinity and we can work

with it under the usual transformation in complex analysis 𝑤′ → 1
𝑤

and take the limit as 𝑤 → ∞.



4. The Hellerman Bound

4.1 Upper bound on the first excited state energy

The Hellerman bound is a universal constraint on the first excited state energy of any CFT. It states that the first excited

state 𝐸1 in the specturm of a CFT is bounded from above by negative the ground state energy which is related to the

central charge of the theory −𝐸0 = 𝑐
24 . Namely,

𝐸1 ≤ 𝑐

24
+𝑂 (1)

Our objective in this section will be to use the modular invariance of the partition function discussed earlier along with

the obvious fact that we are dealing with a CFT to derive the Hellerman bound. Hence, we start off by defining the

problem clearly and work towards the derivation.

Problem Statement: Consider the set of conformal 2D quantum mechanical systems with a bounded from below

Hamiltonian 𝐻 and a discrete set of energy eigenvalues 𝐸𝑛 at finite temperature 𝑇 . The thermal partition function of

the system can then be defined as

𝑍 (𝛽) = 𝑇𝑟 (𝑒−𝛽𝐻 ) =
∑︁
𝑛

𝑒−𝛽𝐸𝑛 =
∑︁
𝐸𝑛

𝑑 (𝑛)𝑒−𝛽𝐸𝑛 , 𝛽 =
1
𝑇
,

where 𝑑 (𝑛) ∈ Z+ is the degeneracy of the eigenvalues 𝐸𝑛. From conformal field theory, we know the following facts

by now:

(1) 𝐸0 is negative and equal to a universal constant 𝐸0 = −𝑐
24 , where 𝑐 > 0. This is because of the anomalies that

make the vacuum energy negative and this is why we needed the central extension of the Witt algebra known as

Virasoro algebra as discussed in the preliminaries section.

(2) The partition function 𝑍 (𝛽) is modularly invariant under 𝛽 → 4𝜋2

𝛽
. This means

𝑍 (𝛽) = 𝑍 (𝑔(𝛽)), 𝑔(𝛽) = 4𝜋2

𝛽

The task is then to use these conditions to derive the Hellerman bound. First of all, we notice that the point 𝛽 = 2𝜋 is

a fixed point of the transformation in the sense that 𝑔(𝛽) = 𝛽 for 𝛽 = 2𝜋. First, we will show that the derivative of the

partition function evaluated at this fixed point actually vanishes

𝑑

𝑑𝛽
𝑍 (𝛽) |𝛽=2𝜋 =

𝑑

𝑑𝛽

∑︁
𝑛

𝑒−𝛽𝐸𝑛 |𝛽=2𝜋 = −
∑︁
𝑛

𝐸𝑛𝑒
−𝛽𝐸𝑛 |𝛽=2𝜋 = −

∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛

18
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𝑑

𝑑𝛽
𝑍 (𝑔(𝛽)) |𝛽=2𝜋 =

𝑑𝑍

𝑑𝛽

𝑑𝑔

𝑑𝛽
|𝛽=2𝜋 = −4𝜋2

𝛽2
𝑑𝑍

𝑑𝛽
|𝛽=2𝜋 =

4𝜋2

𝛽2

∑︁
𝑛

𝐸𝑛𝑒
−𝛽𝐸𝑛 |𝛽=2𝜋 =

∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛

But since 𝑔(𝛽) = 𝛽 for 𝛽 = 2𝜋, 𝑑
𝑑𝛽

𝑍 (𝛽) |𝛽=2𝜋 = 𝑑
𝑑𝛽

𝑍 (𝑔(𝛽)) |𝛽=2𝜋 , this implies

−
∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛 =

∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛 = 0 (4.1)

Hence, 𝑑
𝑑𝛽

𝑍 (𝛽) |𝛽=2𝜋 = 0. In fact, it is even more instructive to investigate the action of the operator (𝛽 𝑑
𝑑𝛽

)𝑁 on 𝑍 (𝛽)

at 𝛽 = 2𝜋, particularly because 𝛽
𝑑𝑔

𝑑𝛽
= − 4𝜋2

𝛽
= −𝑔. So, let’s investigate this by first considering how the object (𝛽 𝑑

𝑑𝛽
)𝑁

transforms under 𝛽 → 𝑔(𝛽) = 4𝜋2

𝛽
. Under this transformation

𝑑

𝑑𝛽
→ − 𝛽2

4𝜋2
𝑑

𝑑𝛽

So,

(𝛽 𝑑

𝑑𝛽
)𝑁 → ( 4𝜋2

𝛽
)𝑁 (− 𝛽2

4𝜋2
𝑑

𝑑𝛽
)𝑁 = (−1)𝑁 (𝛽 𝑑

𝑑𝛽
)𝑁

However, at the fixed point of transformation (𝛽 = 2𝜋), (𝛽 𝑑
𝑑𝛽

)𝑁 𝑍 (𝛽) |𝛽=2𝜋 = (𝛽 𝑑
𝑑𝛽

)𝑁 𝑍 (𝑔(𝛽)) |𝛽=2𝜋 . Hence,

(𝛽 𝑑

𝑑𝛽
)𝑁 𝑍 (𝛽) |𝛽=2𝜋 = (−1)𝑁 (𝛽 𝑑

𝑑𝛽
)𝑁 𝑍 (𝛽) |𝛽=2𝜋

Thus,

(𝛽 𝑑

𝑑𝛽
)𝑁 𝑍 (𝛽) |𝛽=2𝜋 = 0, ∀𝑁 ∈ 2Z+ + 1

Let us write down explicitly the case 𝑁 = 3.

(𝛽 𝑑

𝑑𝛽
)3𝑍 (𝛽) |𝛽=2𝜋 = 2𝜋[−

∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛 + 2𝜋[3

∑︁
𝑛

𝐸2
𝑛𝑒

−2𝜋𝐸𝑛 − 2𝜋
∑︁
𝑛

𝐸3
𝑛𝑒

−2𝜋𝐸𝑛 ]] = 0

But the first term vanishes as shown in (4.1)

3
∑︁
𝑛

𝐸2
𝑛𝑒

−2𝜋𝐸𝑛 − 2𝜋
∑︁
𝑛

𝐸3
𝑛𝑒

−2𝜋𝐸𝑛 = 0

∑︁
𝑛

𝐸2
𝑛 (3 − 2𝜋𝐸𝑛)𝑒−2𝜋𝐸𝑛 =

∑︁
𝑛

𝐸𝑛𝛼(𝐸𝑛)𝑒−2𝜋𝐸𝑛 = 0 (4.2)

Where we defined 𝛼(𝐸) = 𝐸 (3 − 2𝜋𝐸).
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Now, let’s identify 𝐸0 from (4.1)

∑︁
𝑛

𝐸𝑛𝑒
−2𝜋𝐸𝑛 = 0 →

∑︁
𝑛=1

𝐸𝑛𝑒
−2𝜋𝐸𝑛 = −𝐸0𝑒

−2𝜋𝐸0 (4.3)

Now, separate the zero term in (4.2)

∑︁
𝑛=1

𝐸𝑛𝛼(𝐸𝑛)𝑒−2𝜋𝐸𝑛 + 𝐸2
0 (3 − 2𝜋𝐸0)𝑒−2𝜋𝐸0 =

∑︁
𝑛=1

𝐸𝑛𝛼(𝐸𝑛)𝑒−2𝜋𝐸𝑛 − 𝐸0 (3 − 2𝜋𝐸0)
∑︁
𝑛=1

𝐸𝑛𝑒
−2𝜋𝐸𝑛 = 0

Where, we have used (4.3)

∑︁
𝑛=1

𝐸𝑛 (𝛼(𝐸𝑛) − 𝛼(𝐸0))𝑒−2𝜋𝐸𝑛 = 0 (4.4)

It is now instructive to plot 𝛼(𝐸) and investigate its axis of symmetry

Figure 4.1: 𝛼(𝐸𝑛𝑔) vs Eng

The roots of 𝛼(𝐸) are 𝐸 ∈ {0, 3
2𝜋 }, and the axis of symmetry of 𝛼(𝐸) is 𝐸 = 3

4𝜋 . Hence,

𝛼(𝐸) = 𝛼( 3
2𝜋

− 𝐸) (4.5)

Moreover, since 𝐸0 < 0, 𝛼(𝐸0) = 𝛼( 3
2𝜋 − 𝐸0) < 0. This immediately implies that 𝛼(𝐸) is monotonically decreasing

for all 𝐸 > 3
2𝜋 − 𝐸0. Yet, if 𝐸1 > 3

2𝜋 − 𝐸0, then,

𝛼(𝐸𝑛) < 𝛼(𝐸0) ∀𝑛 ∈ Z+
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which contradicts (4.4) because this would imply that we’re summing infinite negative terms and getting zero and

this is impossible. Hence, this implies by contradiction that

𝐸1 ≤ 3
2𝜋

− 𝐸0 =
𝑐

24
+ 3

2𝜋
(4.6)

This is the Hellerman bound we were looking for, it turned out that this bound is necessary for the consistency of the

theory. In the process, we started out by studying a CFT on a torus and identifying the torus modular parameter with

the thermal partition function but because the torus inherited the conformal symmetry in the modular invariance of

the modular parameter 𝜏, the physics should be insensitive to equivalent choices of the modular parameter, and this

implied an upper bound on the first excited state energy by the central charge for the pure consistency of the physical

theory. This result is truly significant and it demonstrates how studying the consistency of CFTs can constraint the

physical theories very much using the conformal bootstrap program.

4.2 Lower bound on the entropy

A more straightforward consequence of the modular invariance of the partition function is a lower bound on the

thermodynamic entropy of the canonical ensemble at the fixed point of transformation 𝛽 = 2𝜋. We know from

statistical mechanics that the entropy is related to the partition function in the following way

𝜎 = 𝑙𝑛(𝑍) + 𝛽⟨𝐸⟩ (4.7)

Equation (4.1) is nothing but the expectation value of the energy at 𝛽 = 2𝜋, ⟨𝐸⟩|𝛽=2𝜋 = 0, vanishing the second term.

Moreover, because the partition function involves a positive contribution from each term, it’s bounded from below by

the contribution of the ground state as follows

𝑍 |𝛽=2𝜋 =
∑︁
𝑛

𝑒−2𝜋𝐸𝑛 = 𝑒−2𝜋𝐸0 +
∑︁
𝑛≥1

𝑒−2𝜋𝐸𝑛 ≥ 𝑒−2𝜋𝐸0 (4.8)

This immediately implies

𝜎 |𝛽=2𝜋 ≥ −2𝜋𝐸0 =
𝜋𝑐

12
(4.9)

Again, this is a powerful result from employing the modular bootstrap program in 2D CFTs, and it concludes our

discussion on the topic.



5. Conclusion

In this work, we have delved into the profound implications of modular invariance in two-dimensional conformal

field theories (CFTs), focusing particularly on the Hellerman bound and the lower bound on entropy. By harnessing the

modular invariance of the partition function and the intrinsic properties of CFTs, we have derived crucial constraints

that any consistent CFT must satisfy.

Firstly, we derived the Hellerman bound, which provides an upper limit on the first excited state energy in the

spectrum of a CFT. This bound is expressed as:

𝐸1 ≤ 𝑐

24
+ 3

2𝜋

where c is the central charge of the theory. The derivation hinges on the modular invariance of the partition function

under the transformation 𝛽 = 2𝜋 is a fixed point of this transformation. By examining the behavior of the partition

function at this fixed point and considering the consistency of the theory, we established that the first excited state

energy must indeed be bounded by the central charge.

Secondly, we explored the lower bound on the thermodynamic entropy of the canonical ensemble at the fixed point

𝛽 = 2𝜋. By expressing the entropy in terms of the partition function and leveraging the fact that the expectation value

of the energy vanishes at this point, we concluded that the entropy is bounded from below by the contribution from the

ground state energy:

𝜎 |𝛽=2𝜋 ≥ 𝜋𝑐

12

This result underscores the profound influence of modular invariance on the thermodynamic properties of CFTs,

providing a universal lower bound on the entropy.

In conclusion, our exploration of the Hellerman bound and the entropy bound highlights the power of modular

invariance and the conformal bootstrap program in constraining the physical characteristics of CFTs. These results

not only reinforce the consistency conditions required for a well-defined CFT but also illustrate how fundamental

symmetries can impose stringent limits on the properties of physical theories. Through such rigorous analyses, we

gain deeper insights into the structure and behavior of CFTs, paving the way for further advancements in theoretical

physics.
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